Using the PSL Ontology

Michael Griininger

Department of Mechanical and Industrial Engineering, University of
Toronto, Toronto, Ontario, Canada

1 Introduction

Representing activities and the constraints on their occurrences is an integral
aspect of commonsense reasoning, particularly in manufacturing, enterprise
modelling, and autonomous agents or robots. In addition to the traditional
concerns of knowledge representation and reasoning, the need to integrate soft-
ware applications in these areas has become increasingly important. However,
interoperability is hindered because the applications use different terminol-
ogy and representations of the domain. These problems arise most acutely for
systems that must manage the heterogeneity inherent in various domains and
integrate models of different domains into coherent frameworks. For example,
such integration occurs in business process reengineering, where enterprise
models integrate processes, organizations, goals and customers. Even when
applications use the same terminology, they often associate different seman-
tics with the terms. This clash over the meaning of the terms prevents the
seamless exchange of information among the applications. translators between
every pair of applications that must cooperate. What is needed is some way
of explicitly specifying the terminology of the applications in an unambiguous
fashion.

The Process Specification Language (PSL) ([10], [7]) has been designed to
facilitate correct and complete exchange of process information among man-
ufacturing systems !. Included in these applications are scheduling, process
modeling, process planning, production planning, simulation, project manage-
ment, workflow, and business process reengineering. This chapter will give an
overview of the PSL Ontology, including its formal characterization as a set
of theories in first-order logic and the range of concepts that are axiomatized
in these theories.

1 PSL has been published as the International Standard ISO 18629 by the Inter-
national Organisation of Standardisation.

2 Michael Griininger
2 How are Ontologies Used?

Applications of ontologies focus on their role as sharable and reusable repre-
sentations of knowledge 77, 7?7. Semantic heterogeneity is particularly acute
problem for tasks that require correct and meaningful communication and
integration among software systems, since different systems may ascribe dis-
parate meanings to the same terms or use distinct terms to convey the same
meaning. Ontologies support semantic integration through a shared under-
standing of the intended semantics of the terminology used by the software
systems.

The reusability of an ontology is determined relative to the genericity of its
axiomatization. In one sense, the axioms of the ontology can be instantiated
within different domains; this leads to the notion of domain theories that
capture the knowledge for particular problems. In another sense, the axioms
of the ontology capture those properties of the world that are valid across
multiple domains; new ontologies can then be constructed as more domain-
specific extensions of the generic ontologies.

2.1 Specifying Domain Theories

Within the context of a process ontology , domain theories take the form
of descriptions of processes as repeatable patterns of behaviour. The various
forms of process representations are ubiquitous in industry: there is a plethora
of business and engineering software applications — workflow, scheduling, dis-
crete event simulation, process planning, business process modeling, and oth-
ers — that are designed explicitly for the construction of process models of
various sorts [7]. In addition, there are many concrete domains for process rep-
resentations, including manufacturing, web services, and business processes.

A process ontology provides the underlying semantics for the process ter-
minology that is common to the many disparate domains and software ap-
plications. This allows us to evaluate the consistency of process descriptions.
In this way, ontologies can be used to support automated reasoning (such as
theorem proving and constraint satisfaction) with the axioms of the ontology
and domain theories alone.

Ontologies also provide guidance in the specification of domain theories.
For example, each class of activities in the PSL Ontology is associated with
a specific class of sentences that are the correct process descriptions for that
class. The primary focus of this chapter will be a survey of the various classes of
activities in the ontology together with examples of the corresponding process
descriptions.

2.2 Semantic Integration

A semantics-preserving exchange of information between two software applica-
tions requires mappings between logically equivalent concepts in the ontology

Using the PSL Ontology 3

of each application. The challenge of semantic integration is therefore equiva-
lent to the problem of generating such mappings 7?7, determining that they are
correct, and providing a vehicle for executing the mappings, thus translating
terms from one ontology into another.

The Twenty Questions approach ([4]) describes a technique for the semi-
automatic generation of semantic mappings from application ontologies to
the PSL Ontology, which can then be used to automatically derive direct
mappings between application ontologies.

The work in [8] describes an example of using PSL as a common ontology
to facilitate manufacturing process information exchange between two differ-
ent software applications, ProCAP — a process modelling tool based upon
the IDEF3 method of systems modelling and ILOG — a C++ library for
constraint-based scheduling. In a typical scenario, a user of ProCAP describes
the types or processes that are necessary to produce some product, specifies
the order in which these processes must occur, and describes what types of
resources are necessary for the creation of the product. Semantic mappings
between the PSL Ontology and the terminology used in IDEF3 and ILOG
process descriptions form the basis for translators between the software ap-
plications.

2.3 Building New Ontologies

An ontology with a consistent and complete axiomatization of its intended
semantics can be used as a semantic foundation for either building a new
ontology or for augmenting an ontology that has an incomplete axiomatization
?7?. For example, the process model of the semantic web services ontology
OWL-S (??, [6]) contains a taxonomy of control constructs for specifying
composite web services; however, the intended semantics of these constructs
is expressed in natural language, since it cannot be axiomatized in OWL. The
work in [3] provides a first-order axiomatization of these constructs using the
PSL Ontology.

The Semantic Web Services Ontology (SWSO) ([12]) is an extension of
the PSL Ontology with Web service-specific concepts which enables reasoning
about the semantics underlying Web services and along with their interactions
with each other and with the “real world”. Because SWSO is an extension of
the PSL Ontology, it also provides a first-order axiomatization of the intended
semantics of the process model of OWL-S. This supports reasoning with the
axioms of the ontology alone, rather than use extra-logical algorithms to guar-
antee that queries are entailed by the web service specifications.

4 Michael Griininger

3 Basic Ontological Distinctions

The PSL Ontology consists of a set of first-order logic theories within which
there is a distinction between core theories and definitional extensions 2. Core
theories introduce new primitive concepts, while all terms introduced in a
definitional extension that are conservatively defined using the terminology of
the core theories.

All core theories within the ontology are consistent extensions of PSL-Core
(Tpsi_core), although not all extensions need be mutually consistent. Table 1
is a summary of the key terms in the lexicon of the eight core theories which
will be used in this chapter.

3.1 Activity and Activity Occurrence

In general, business and engineering processes are described at the type level —
a process specification characterizes a certain general pattern that might admit
of many instantiations which might differ considerably from one another. For
example, the specification of the manufacturing process for making a car will
describe different sequences of tasks for building the components of the car
and may even describe alternative ways of producing subassemblies. A robust
foundation for process modelling, therefore, should be able to characterize
both the general process pattern described by a specification as well as the
class of possible instantiations of that pattern. Moreover, such a foundation
must be able to clearly represent the constraints that a process specification
places on something’s counting as an instantiations of the process, that is, the
constraints on process execution.

Within the PSL Ontology, an activity is a repeatable pattern of behaviour,
while an activity occurrence corresponds to a concrete instantiation of this
pattern. The relationship between activities and activity occurrences is rep-
resented by the occurrence_of(o,a) relation. Activities may have multiple
occurrences, or there may exist activities which never occur. Any activity
occurrence corresponds to a unique activity.

In contrast to many object-oriented approaches, activity occurrences are
not considered to be instances of activities, since activities are not classes
within the PSL Ontology. One can of course specify classes of activities in a
process description. For example the term pickup(x,y) can denote the class
of activities for picking up some object z with manipulator y, and the term
move(x,y, z) can denote the class of activities for moving object x from lo-
cation y to location z. Ground terms such as pickup(Blockl, Le ft Hand) and

2 The complete set of axioms for the PSL Ontology can be found at
http://www.mel.nist.gov/psl/psl-ontology/. Core theories are indicated by
a .th suffix and definitional extensions are indicated by a .def suffix.

All axioms and definitions in the PSL Ontology are written in CLIF (Common
Logic Interchange Format).

Using the PSL Ontology

Tpsi_core |activity(a) a is an activity
activity_occurrence(o) o is an activity occurrence
timepoint(t) t is a timepoint
object(x) x is an object
occurrence_of(o,a) o0 is an occurrence of a
beginof (o) the beginning timepoint of o
endof (o) the ending timepoint of o
before(ti,ta) timepoint £, precedes timepoint ts

on the timeline

Tsubactivity | subactivity (a1, az) ai is a subactivity of az
primitive(a) a is a minimal element of the

subactivity ordering

Totomic atomic(a) a is either primitive or a concurrent

activity
conc(ay, az) the activity that is the concurrent
composition of a1 and a2

Tocetree legal(s) s is an element of a legal occurrence

tree

earlier(si, s2)

s1 precedes sz in an occurrence tree

Tdisc,state

holds(f,s) the fluent f is true immediately af-
ter the activity occurrence s
prior(f,s) the fluent f is true immediately be-

fore the activity occurrence s

Teomplexw |min_precedes(si, s2,a) the atomic subactivity occurrence s1
precedes the atomic subactivity oc-
currence Sz in an activity tree for a
root(s, a) the atomic subactivity occurrence s
is the root of an activity tree for a
next_subocc(si, 2, a) the atomic subactivity occurrence s1
is by the atomic subactivity occur-
rence sz in an activity tree for a
Toctoce subactivity_occurrence(o1,02)|01 is a subactivity occurrence of o2
root_occ(0) the initial atomic subactivity occur-
rence of o
leaf_occ(s,0) s is the final atomic subactivity oc-
currence of o
Tiuration |timeduration(d) d is a timeduration

duration(ty, t2)

the timeduration whose value is
the “distance” from timepoint ¢; to
timepoint o

Table 1. Lexicon for core theories in the PSL Ontology.

6 Michael Griininger

move(Shipmentl, Seattle, Chicago) are instances of these classes of activities,
and each instance can have different occurrences. Furthermore, there may be
classes of activity occurrences that do not correspond to activities, e.g. that
class of activity occurrences that finish by Friday.

3.2 Time

Underlying the intuition that activity occurrences are the instantiations of
activities is the notion that each activity occurrence is associated with unique
timepoints that mark the begin and end of the occurrence. The PSL Ontology
introduces two functions beginof and endof for this purpose.

The set of timepoints is linearly ordered, forwards into the future, and
backwards into the past. Within the PSL Ontology, the extension of the be fore
relation captures this linear ordering. There are also different ontological com-
mitments about time that are not made within the PSL Ontology, such as the
denseness of the timeline; any such commitments must be axiomatized within
a theory that extends the PSL Ontology.

There are some approaches (e.g. [5]) that do not distinguish between time-
points and activity occurrences, so that activity occurrences form a subclass
of timepoints. However, activity occurrences have preconditions and effects,
whereas timepoints do not. Other approaches hold that timepoints are prim-
itives but activity occurrences are not; for example, approaches such as [11]
claim that one can derive timepoints as “ticks” of a clock activity; however,
such an approach ties the temporal ontology too closely to the process ontol-
ogy.

The core theory Tjyration for duration adds a metric to the timeline by
mapping every pair of timepoints to a new sort called timeduration that sat-
isfies the axioms of algebraic fields. Of course, the duration of an activity
occurrence is of most interest, and is equal to the duration between the endof
and beginof timepoints of the activity occurrence.

3.3 Objects

Many debates have erupted within philosophy over the distinction between
objects that are continuants (that is, they exist whole and entire at different
times) and objects that are occurrents (that is, they have different parts ex-
isting at different times) 3. Although the PSL Ontology tries to avoid making
any commitments that would preclude one position or another in this debate,
activity occurrences can be considered to be occurrents, while continuants are
represented by objects. The ternary relation participates_in(zx,o,t) is used to
tie the two approaches together by specifying that object x participates in
activity occurrence o at timepoint t.

3 This terminology is used in [2]. The treatment of objects as continuants is also
known as endurantism or 3D-ontology, while the treatment of objects as occur-
rents is also known as perdurantism or 4D-ontology.

Using the PSL Ontology 7
3.4 Composition

A ubiquitous feature of process formalisms is the ability to compose simpler
activities to form new complex activities (or conversely, to decompose any
complex activity into a set of subactivities). The PSL Ontology incorporates
this idea while making several distinctions between different kinds of compo-
sition that arise from the relationship between composition of activities and
composition of activity occurrences.

Subactivities

The PSL Ontology uses the subactivity relation to capture the basic intuitions
for the composition of activities. The core theory Tyypactivity axiomatizes this
relation as a discrete partial ordering (such as Figure 1), in which primitive
activities are the minimal elements.

Tsubactivity alone does not specify any relationship between the occurrence
of an activity and occurrences of its subactivities. For example, we can com-
pose the primitive activities press and punch in Figure 1 to make the complex
activity sur facing and we can also compose them to make a different complex
activity shaping. However, this specification of subactivities alone does not
allow us to say that surfacing is a deterministic activity, or that shaping is
a nondeterministic activity. The core theory Tcompies is therefore introduced
to characterize the relationship between the occurrence of a complex activity
and occurrences of its subactivities.

make_frame fabricate
surfacing shaping
cuft pres punch

Fig. 1. Example of subactivities and their composition into different complex ac-
tivities.

Concurrency

Concurrency involves more than the fact that two activities occur at the same
time, since concurrent activities may have different preconditions and effects
than any of the activities if they occur alone. In particular, the activities may
have interfering preconditions, so that even if two activities can possibly occur

8 Michael Griininger

separately, they cannot occur concurrently (e.g. the oven cannot be used to
bake a cake and a turkey at the same time) or the effects of two activities may
clobber each other, so that the effects of the concurrent activity are different
than the effects of the two activities if they occur separately ([9]); for example,
the effect of lifting only the right side or only the left side of a table has the
effect that the table is touching the floor. Lifting both the right and left sides
concurrently has the effect of lifting the entire table.

This observation leads to a notion of atomic activity which corresponds to
some set of primitive activities. Concurrency is represented by the occurrence
of concurrent activities rather than concurrent activity occurrences. The core
theory Tyromic axiomatizes the conc function that specifies the aggregation of
sets of primitive activities into concurrent activities.

Subactivity Occurrences

The core theory Ticioce axiomatizes the subactivity_occurrence relation,
which is the composition relation over activity occurrences corresponding to
the composition relation over activities. Occurrences of atomic activities are
the minimal elements in this composition ordering — they do not have any
nontrivial subactivity occurrences.

Following the intuition that activity occurrences are occurrents rather than
continuants, one can consider the subactivity occurrence to be a temporal part
of the complex activity occurrence. The axioms of Tyctocc guarantee that any
subactivity occurrence is “during” an occurrence of the complex activity.

3.5 State and Change

Many applications of process ontologies are used to represent dynamic be-
haviour in the world so that software systems may make predictions about
the future and explanations about the past. In particular, these predictions
and explanations are often concerned with the state of the world and how
that state changes. The PSL core theory Ty;sc_state is intended to capture the
basic intuitions about state and its relationship to activities.

Properties in the domain that can change are called fluents . Similar to
the representation of activities, fluents can also be denoted by terms within
the language. For example, in_stock(Gadgetl, Cambridge) denotes the fluent
that represents the property that the object Gadgetl is available in stock at
the Cambridge warehouse.

Intuitively, a change in state is captured by the set of fluents that are
either achieved or falsified by an activity occurrence. The prior(f,o) relation
specifies that a fluent f is intuitively true prior to an activity occurrence o
and the holds(f, o) relation specifies that a fluent f is intuitively true after an
activity occurrence o. For example, before a delivery, Gadgetl is not in the
Cambridge warehouse, but after delivery occurs, it is in stock:

occurrence_of (o, delivery(Gadgetl, Cambridge)) D

Using the PSL Ontology 9

—prior(in_stock(Gadgetl, Cambridge), o)
Aholds(in_stock(Gadgetl, Cambridge), o)

A fluent is changed by the occurrence of activities, and a fluent can only
be changed by the occurrence of activities. Thus, if some fluent holds after an
activity occurrence, but after an activity occurrence later along the branch
it is false, then an activity must occur at some point between that changes
the fluent. This also leads to the requirement that the fluent holding after an
activity occurrence will be the same fluent holding prior to any immediately
succeeding occurrence, since there cannot be an activity occurring between
the two by definition.

State does not change during the occurrence of an atomic activity. Conse-
quently, the PSL Ontology cannot represent phenomena in which some feature
of the world is changing as some continuous function of time (hence the name
“Discrete State” for the extension). If state changes during an activity occur-
rence, then it must be an occurrence of a complex activity.

4 Process Descriptions for Atomic Activities

Within the taxonomy of the PSL Ontology, activities are classified according
to the kinds of constraints that their occurrences satisfy. A process descrip-
tion for an activity in some class imposes constraints on activity occurrences
corresponding to the definition of the class. Classes of atomic activities are
defined with respect to constraints that arise from the following two questions:

e Under what conditions does an atomic activity occur?
e How do occurrences of atomic activities change fluents?

A detailed exposition of these constraints requires a closer look at the
model theory of the core theory Tyectree, in particular, the notion of occurrence
trees.

4.1 Occurrence Trees

An occurrence tree is a partially ordered set of atomic activity occurrences,
such that for a given set of activities, all discrete sequences of their occur-
rences are branches of the tree. It is important to note that an occurrence
tree contains all occurrences of all atomic activities; it is not simply the set
of occurrences of a particular (possibly complex) activity. Because the tree is
discrete, each activity occurrence in the tree has a unique successor occurrence
of each activity.

Although occurrence trees characterize all sequences of activity occur-
rences, not all of these sequences will intuitively be physically possible within
the domain. This leads to the notion of the legal occurrence tree, which is
the subtree of the occurrence tree that consists only of possible sequences of
activity occurrences; The legal(o) relation specifies that the atomic activity
occurrence o is an element of the legal occurrence tree.

10 Michael Griininger
4.2 Constraints on Legal Occurrence

The process descriptions for atomic activities constrain the legal occurrence
tree. The general form of such a process description is:

(Vo) occurrence_of(o,a) A legal(o) D @(o) (1)

where @(0) is a formula that specifies the constraint on the legal activity
occurrence. Within the PSL Ontology, different classes of atomic activities
correspond to different classes of formulae that are used to instantiate ¢(o) in
the general process description. In particular, we consider cases in which the
preconditions are based on state, time, or the occurrence of other activities.

State-based Preconditions

The most prevalent kind of precondition are markovian preconditions, in
which the possibility of occurrence depends only on the state that holds prior
to an activity occurrence, e.g.

Mizxing is not performed unless the moulding machine is clean.

In this case, the cleanliness of the machine is the state, and the occurrence
of the mixing activity depends on whether or not this state holds:

(Vo, z) occurrence_of (o, mizing(x)) Alegal(o) D prior(clean(x),0) (2)

Note that for this particular class of activities, the consequent of the sentence
is a formula that contains only prior literals.

Time-based Preconditions

In more general scenarios, there may be temporal preconditions that depend
only on the time at which the activity is to occur, such as
The pre-heating operation can only be performed on Tuesday or Thursday.
which is axiomatized as

(Vo, x) occurrence_of (o, preheat(x)) A legal(o) D

(beginof (o) = Tuesday) V (beginof (o) = Thursday) (3)

The consequent of this process description is a formula that contains only
beginof literals.

Occurrence Constraints

The possibility of an activity occurrence may depend on the occurrence of
other activities. Consider the example:
If we do not fold the metal after fabrication, we need to reheat it

Using the PSL Ontology 11
which is axiomatized as
(Vo1,x) occurrence-of (o1, reheat(x)) A legal(o1) D

—(Joz) occurrence_of (02, fold(x)) A earlier(oz, 01) A legal(oz) (4)

In this case, an occurrence of the reheating activity will depend on the con-
dition that there is no earlier legal occurrence of the folding activity.

Time-based Occurrence Constraints

Preconditions may also take the form of periodic occurrences, e.g.
Drill bits are replaced every 10 minutes.

(Vo1, 1) occurrence_of (o1, replace(x1)) Alegal(o1) D
(Jog, 22) occurrence_of (oz, replace(xs)) A earlier(oa, 01)

Nlegal(o2) A (duration(beginof(o2), beginof(o1)) = 10) (5)

In this example, occurrences of the replacement activity depend not only
on the occurrence of an earlier replacement activity but also on the time at
which that activity occurred.

4.3 Effects

Effects characterize the ways in which activity occurrences change the state of
the world. Such effects may be context-free, so that all occurrences of the ac-
tivity change the same states, or they may be constrained by other conditions.
The general form of such a process description is:

(Vo) occurrence_of(o,a) A ®(0) D holds(f, o) (6)

where @(0) is a formula that specifies the constraint on the effects of the
activity occurrence.

State-based Effects

The most common constraint is state-based effects that depend on some con-
text:

If the object is fragile, then it will break when dropped; if the object is
elastic, then it will bounce when dropped.

(Yo, x) occurrence_of (o, drop(x)) A prior(fragile(z), o)

D holds(broken(z), o) (7)

12 Michael Griininger
Time-based Effects

Although process descriptions for the effects of atomic activities are most often
specifying state-based effects, other kinds of constraints also arise in practice,
such as time-based effects:

If the rental car is returned after the due date, then the cost includes a late

fee

which is axiomatized by
(Vo, x) occurrence_of (o, rental(x)) A before(DueDate, endof(0))

D holds(late_fee(x), 0) (8)

The effects of the activity occurrence depend only on timepoints — the time
at which the activity occurrence ends and the timepoint that is the due date
of the rental.

Occurrence-based Effects

In some cases, the effects depend not only on when the activity occurs, but
also on the timepoints at which other activity occurrences begin or end. For
example,

If we remove the coffee pot before the brewing activity completes, then the
burner will be wet

is axiomatized by

(Vo1, 02, 2, y) occurrence_of (o1, brew(zx, y)) A occurrence_of (o2, remove(x, y))

Nbefore(beginof(oz),beginof(o1)) D holds(wet(y), 01) (9)

and in this case, the formula in the process description contains multiple
variables denoting different activity occurrences, as well as be fore literals.

Duration-based Effects

For some classes of atomic activities, the effects are dependent on the duration
of the activity occurrences. For example,

The time on the clock display will change after holding the button for three
seconds

is axiomatized by

(Yo, x) occurrence_of (o, press(x)) A duration(endof (o), beginof(o)) = 3

D holds(display(z), o) (10)

The effects do not depend on the time at which the activity occurs, so that
the formula does not contain any be fore literals.

Using the PSL Ontology 13
5 Process Descriptions for Complex Activities

Classes of complex activities are defined with respect to the following two
questions:

e What is the relationship between the occurrence of the complex activity
and occurrences of its subactivities?
e Under what conditions does a complex activity occur?

An activity may have subactivities that do not occur; the only constraint
is that any subactivity occurrence must correspond to a subtree of the activity
tree that characterizes the occurrence of the activity.

5.1 Activity Trees

The basic structure that characterizes occurrences of complex activities is the
activity tree , which is a subtree of the legal occurrence tree that consists
of all possible sequences of atomic subactivity occurrences beginning from a
root subactivity occurrence. Each branch of an activity tree corresponds to a
possible sequence of occurrences of subactivities of the complex activity.

cut

0s
punch paint
% %
press
07

punch
/08
cut paint
01 3 \
press
99
paint
910
press
Oy \
punch
o1

Fig. 2. Example of occurrence tree and activity trees.

In a sense, an activity tree is a microcosm of the occurrence tree, in which
we consider all of the ways in which the world unfolds in the context of an

14 Michael Griininger

occurrence of the complex activity. For example, consider the occurrence tree in
Figure 2, and suppose that an occurrence of the complex activity make_frame
consists of an occurrence of cut followed by occurrences of punch and press.
The subtree consisting of

{Oiut, 012)unch7 0;17)7“ess7 O;zress’ 11711anh}
is a possible activity tree for make_frame.

The models of any process description for a complex activity consists of
a set of activity trees within an occurrence tree. Each branch of an activity
tree is a sequence of atomic subactivity occurrences that satisfies the process
description.

Three relations in particular are used in process descriptions for complex
activities. The root(o, a) relation specifies that the atomic subactivity occur-
rence o is the root of the activity tree. The min_precedes relation is the
ordering relation over the atomic subactivity occurrences in the activity tree.
In Figure 2, the activity tree for make_frame satisfies the process description

(Vo) occurrence_of (o, make_frame) D (Jo1, 02, 03) occurrence_of (o1, cut)

Noceurrence_of (o2, punch) A occurrence_of (o3, press)
Aroot(o1, make_frame)
Amin_precedes(o1, 02, make_frame) A min_precedes(oy, 03, make_frame)

The axioms of Tyct0cec guarantees that there is a one-to-one correspondence
between branches of activity trees and complex activity occurrences. The ax-
ioms for subactivity_occurrence relation guarantee that the branches of the
activity trees for a subactivity are contained in the branches of the activity

tree for the complex activity. In Figure 2, the branch {o§ut, o8“"" 0B} of

. ke
the activity tree corresponds to an occurrence ofy""© frame of make_frame,

. . ke
and each element of the branch is a subactivity occurrence of ofL**e-/Tame,

5.2 Branch Structure

Different subactivities may occur on different branches of the activity tree —
different occurrences of an activity may have different subactivity occurrences
or different orderings on the same subactivity occurrences.

In this sense, branches of the activity tree characterize the nondetermin-
ism that arises from different ordering constraints or iteration. For example,
the surfacing activity is intuitively nondeterministic; the activity trees for
sur facing contain two branches, one branch consisting of an occurrence of
polish and one branch consisting of an occurrence of paint.

Complex activities can be classified with respect to symmetries of its ac-
tivity trees. Concretely, these are axiomatized by relationships between the
different branches of an activity tree. We will now take a closer look at the
process descriptions for activities in these classes.

Using the PSL Ontology 15
Permuted Activities

For permuted activities, each branch of the activity tree is a different permu-
tation of the same set of subactivity occurrences. For example, the informal
process description

Making the frame consists of cutting, punching, and pressing. can be for-
mally written as

(Yo, z) occurrence_of (o, make_frame(zx))

D (o1, 02,03) occurrence_of (o1, cut(x))
Noceurrence_of(og, punch(x)) A occurrence_of (o3, press(x)) (11)

If we consider the activity trees that satisfy this sentence (Figure 3), we can
see that each branch contains an occurrence of each subactivity.

Oim »o 127ress »o gunch

cut press
/05 _—-»06
punch
04 \
Cut
Ogress > Ocsu

Fig. 3. Activity trees for permuted activities.

Activities may also be nondeterministic; for example, there could be alter-
native process plans to produce the same product depending on the customer,
such as the constraint

Fabrication consists of cutting the metal together with either pressing or
punching. which is formally written as

(Yo, x) occurrence_of (o, fabricate(x))

D (Jo1, 02) subactivity_occurrence(oy,0) A subactivity_occurrence(oz, o)
Noceurrence-of (o1, cut(x))
N(occurrence_of (o2, press(x)) V occurrence_of (o2, punch(x))) (12)

The activity tree in Figure 4 that satisfies this sentence has branches that
contain occurrences of different subactivities.

16 Michael Griininger

T~

punch
0

01

press
03

Fig. 4. Activity tree for a nondeterministic activity.

Ordering Constraints

One of the most common intuitions about processes is the notion of process
flow, or the specification of some ordering over the subactivities of an activity,
such as

Making the car chassis involves making the body and making the frame in
parallel, followed by final assembly.

which is axiomatized by the process description

(Yo, 01, 09, 03, z,y) occurrence_of (o, make_chassis(z,y))

Noccurrence_of (o1, make_body(y)) A occurrence_of(o2, make_frame(x))
Noccurrence_of (o3, final_assembly(z,y))
D min_precedes(o1, 03, make_chassis(z,y))
Amin_precedes(oz, 03, make_chassis(z,y)) (13)

In Figure 5, we can see that each branch of the activity tree for this activity
satisfies the same set of ordering constraints on subactivity occurrences.

make_body make_body final _assembly
o » o5 03

Orznake,‘ frame > OZnake, frame >0 g inal _assembly

Fig. 5. Activity trees for permuted activities.

Iteration

Iteration is captured by the class of repetitive activities, in which the activ-
ity tree can be decomposed into copies of some subtree (which intuitively
corresponds to the activity tree of the subactivity that is being iterated).

Using the PSL Ontology 17

Nondeterministic iteration, such as
Occurrences of painting consist of multiple occurrences of coating
is axiomatized by a process description of the form

(Vo) occurrence_of (o1, painting) D

((Voq, 1) occurrence_of (0a, coating) A subactivity_occurrence(os, 01)
Nleaf _oce(sy,02) D (leaf_oce(s1,01) V (Jos, s2) occurrence_of (o3, coating)
A(s2 = root_occ(os)) A next_suboce(sy, sz, painting)) (14)

This process description says that for every occurrence of coating in an activity
tree for painting, either there exists a next occurrence of coating or the leaf
subactivity occurrence of the occurrence of coating is also the leaf occurrence
of the occurrence of painting.

Complex activities in which the number of iterations depends on achieving
some state (analogous to while loops) is a property of a set of activity trees,
as we shall see in the next section.

5.3 Spectrum and Variation

A complex activity will in general have multiple activity trees within an oc-
currence tree, and not all activity trees for an activity need be isomorphic to
each other. This property leads to the notion of the spectrum of an activity,
which is the set of equivalence classes of isomorphic activity trees. While the
former classes of activities compared branches within the same activity tree,
we can also define classes with respect to the spectrum of the activity.

The notion of variation within the PSL Ontology characterizes the con-
ditions under which activity trees for a complex activity are isomorphic to
each other. Different activity trees for the same activity can have different
subactivity occurrences, or the activity trees may differ on the ordering of the
subactivity occurrences.

For conditional activities, the fluents that hold prior to the activity occur-
rence determine which subactivities occur, as in the constraint

Within the painting activity, if the surface of the product is rough, then
sand the product:

which is written as

(Vs, 01, z) occurrence_of (o1, paint(x)) Aroot_occ(or) = s A (prior(rough(z), s)
D (Jo2) occurrence_of (o2, sand(x)) A subactivity_occurrence(os, 01)

A(root_occ(oz) = s) (15)

Alternatively, the ordering over subactivity occurrences of an activity may
depend on state, as in the constraint
If the machine is not ready, then perform the painting before final assembly

18 Michael Griininger
which can be written as
(Yo, 01, 09, z,y) occurrence_of (o, assembly(x, y))

Noceurrence_of (o1, paint(x)) A occurrence_of (o2, final(x))
A=prior(ready(y), root_occ(o))
D min_precedes(root_occ(o1), root_occ(oz2), assembly(x)) (16)

Notice how this is distinct from conditional activities, since both painting
and final assembly will occur; the different activity trees in this case arise from
the ordering of the occurrences of these activities.

5.4 Distribution

The preceding two sections have presented some of the classes in the ontol-
ogy that are defined with respect to the relationship between occurrences of
complex activities and occurrences of their atomic subactivities. We now turn
to the classes of complex activities that arise from constraints under which
complex activities themselves occur.

There may be branches of a subtree of the occurrence tree that are isomor-
phic to branches of an activity tree, yet they do not correspond to occurrences
of the activity. For example, in Figure 2, {0$“, ogumh} need not be an activity
tree for make_frame, even though it is isomorphic to a branch of an activity
tree.

The general form for process descriptions related to distribution is:

(Vs) @(s) D (o) occurrence_of (0,a) A s = root_occ(o) (17)

For triggered activities such as

Deliver the product when we have received three orders.

state determines when an activity must occur, so that the process descrip-
tion is written as

(s, x) prior(order_quantity(z,3),s) D

(Jo) occurrence_of (o, deliver(x)) A s = root_occ(o) (18)

For launched activities such as
Deliver the product at 1000.
time determines when an activity must occur, leading to the process de-
scription
(Vs) (beginof(s) = 1000) D

(Jo, x) occurrence_of (o, deliver(z)) A s = root_occ(o) (19)

In either case, models of the process description specify the distribution
of activity trees within the occurrence tree.

Using the PSL Ontology 19
5.5 Embedding Constraints

The PSL Ontology does not force the existence of complex activities; there
may be subtrees of the occurrence tree that contain occurrences of subac-
tivities, yet not be activity trees. We can exploit this property to represent
the existence of activity attempts, intended effects, and temporal constraints;
subtrees that do not satisfy the desired constraints will simply not correspond
to activity trees for the activity.

External Activity Occurrences

For a given complex activity, there may be external activities (that is, ac-
tivities that are not subactivities) whose occurrence either interfere with the
complex activity or which are necessary for the activity to occur. Examples of
such necessary activities include either activities performed by external agents
(such as a courier delivery or pickup) or it may be an activity such as setup.
In the constraint To produce the chassis, first drill the series of 1 ¢m holes,
followed by drilling the series of 2 cm holes, the activity that changes the drill
bit fixture is not a subactivity of the process plan for producing the chassis,
but is a setup activity that must occur between drilling the two sets of holes.

Interruptability

Closely related to external activity occurrences is the notion of interruptability
and activity attempts. With an interruptable activity, an external activity may
occur without interfering with the original activity. For example, interruptable
activities may be preempted or suspended:

The assembly of computers for one customer can be halted to work on a
rush order for another customer

(Vs1, 1, x2) root(si, assemble(x1)) A occurrence_of (s3, assemble(za))

Nlegal(ss) A earlier(sy, s3)
D (dsq) leaf (s, assemble(x1)) A min_precedes(si, s2, assemble(x1)) (20)

while noninterruptable activities may not:
Pouring of metal from the furnace cannot be stopped once initiated.

(Vs1, 82) root(sy, pour_metal) A leaf(sa, pour _metal)

Amin_precedes(sy, s2, pour_metal)
D —(3s3) occurrence_of (ss, stop) A earlier(sy, s3) A earlier(ss, s2) (21)

In this latter example, if for some reason the metal pouring does stop, then
we would intuitively consider this to be an activity attempt, rather than an
occurrence of the activity.

20 Michael Griininger

Intended Effects

There are many circumstances in which we want to make a distinction between
the intended effects of an activity and the actual effects of the activity. For
example, the manufacturing process plan for making some product in a steel
company is defined with respect to the properties specified by customer and
quality requirements (such as grade, surface properties, width, and thickness),
but due to external nondeterministic factors, not every occurrence of the pro-
cess will provide products that satisfy these requirements. Quality problems
arise from this divergence of actual effects from intended effects.

For example, informal process descriptions such as Bake the soup until it is
opaque or Heat the solution until reaches 50 C can be formalized by sentences
of the form

(Vs) leaf(s,a) D holds(f,s) (22)

In both of these examples, it is possible to terminate the activity occur-
rence before the intended state is achieved, but in the context of the intended
effects, the activity occurrence will terminate only when the state is achieved.

Temporal Constraints

With temporal constraints, subactivities are not allowed to occur at arbitrary
times during occurrences of the activity. Examples of such constraints include
schedules, which specify the possible times at which the subactivities may
occur:

The part will arrive 10 days after placing the order request

(Yo, s1, s2)min_precedes(si, sa, a)Noccurrence_of (s1,ar)Noccurrence-of(sa, az)

D duration(endof(s2),endof(s1)) = 10 (23)

In this example, the possible occurrences of the activity are restricted to
those whose subactivities satisfy the temporal constraints.

6 Summary

Within the increasingly complex environments of enterprise integration, elec-
tronic commerce, and the Semantic Web, where process models are main-
tained in different software applications, standards for the exchange of this
information must address not only the syntax but also the semantics of pro-
cess concepts. PSL draws upon well-known mathematical tools and techniques
to provide a robust semantic foundation for the representation of process in-
formation. This foundation includes first-order theories for concepts together
with complete characterizations of the soundness and completeness of these
theories. In this chapter, we have seen how the PSL Ontology can be used
to specify process descriptions for a broad range of problems and provide the
semantic foundations for new ontologies.

Using the PSL Ontology 21

References

10.

11.

12.

. Bock, C. and Gruninger, M. (2005) PSL: A semantic domain for flow models,

Software and Systems Modeling 4:209-231.

Grenon, P. and Smith, B. (2004) SNAP and SPAN: Towards dynamic spatial
ontology. Spatial Cognition and Computation, 4(1):69-104, 2004.

Gruninger, M. (2003) Applications of PSL to Semantic Web Services, Workshop
on Semantic Web and Databases. Very Large Databases Conference, Berlin.
Gruninger, M. and Kopena, J. (2004) Semantic Integration through Invariants,
Al Magazine, 26:11-20, 2004.

Hayes, P. (1996) A Catalog of Temporal Theories. Artificial Intelligence Tech-
nical Report UIUC-BI-AI-96-01, University of Illinois at Urbana-Champaign.
Mcllraith, S., Son, T.C. and Zeng, H. (2001) Semantic Web Services, IEEE
Intelligent Systems, Special Issue on the Semantic Web. 16:46-53, March/April,
2001.

Menzel, C. and Gruninger, M. (2001) A formal foundation for process modeling,
Second International Conference on Formal Ontologies in Information Systems,
Welty and Smith (eds), 256-269.

Ciocoiu, M., Gruninger M., and Nau, D. (2001) Ontologies for integrating en-
gineering applications, Journal of Computing and Information Science in En-
gineering, 1:45-60.

Pinto, J. and Reiter, R. (1993) Temporal reasoning in logic programming: A
case for the situation calculus. Proceedings of the 10th International Conference
on Logic Programming, Budapest, Hungary, June 1993.

Schlenoff, C., Gruninger, M., Ciocoiu, M., (1999) The Essence of the Process
Specification Language, Transactions of the Society for Computer Simulation
vol.16 no.4 (December 1999) pages 204-216.

Sowa, J. (2000) Knowledge Representation: Logical, Philosophical, and Compu-
tational Foundations. Brooks/Cole Publishing.

Semantic Web Services Framework (SWSF) Overview W3C Member Submis-
sion 9 September 2005.

Index

activity, 4
activity tree, 13

continuant, 6
effects, 11

fluent, 8

occurrent, 6
preconditions, 10
process ontology, 2

PSL, 1

time, 6

Author Index

Griininger, Michael, 1

