
ELSEVIER Computers in Industry 29 (1996) 123- 134

An organisation ontology for enterprise modeling: Preliminary
cloncepts for linking structure and behaviour

Mark S. Fox, Mihai Barbuceanu, Michael Gruninger *

Department of I,+zdustrial Engineering, Uniuersir)i of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S IA4, Canada

Abstract

The paper presents our preliminary exploration into an organisation ontology for the TOVE enterprise model. The
ontology puts forward a number of conceptualizations for modeling organisations: activities, agents, roles, positions, goals,
communication, authority, commitment. Its primary focus has been in linking structure and behaviour through the concept of
empowerment. Empow’erment is the right of an organisation agent to perform status changing actions. This linkage is critical
to the unification of enterprise models and their executability.

Keywords: Activity; Emp~xverment; Ontology; Organisation; Role

1. Introduction

What is an organisation and how do we model it
in an information system? Many disciplines have
explored the former and every information system
built has created a version of the latter. The purpose
of this paper is to explore the latter from the perspec-
tive of Artificial Intelligence.

As information systems play a more active role in
the management and operations of an enterprise, the
demands on these systems have also increased. De-
parting from their traditional role as simple reposito-
ries of data, information systems must now provide
more sophisticated support to manual and automated
decision making; they must not only answer queries
with what is explicitly represented in their Enterprise

* Tel: + 1-416-978-6823; fax: + 1-416-971-2479; e-mail: {msf,
mihai, gruninger}@ie.utoronto.ca; http://www.ie.utoronto.ca/
EIL/eil.html.

Model, but must be able to answer queries with what
is implied by the model. The goal of the TOVE
Enterprise Modeling project is to create the next
generation Enterprise Model, a Common Sense En-
terprise Model. By common sense we mean that an
Enterprise Model has the ability to deduce answers
to queries that require extended but relatively shal-
low knowledge of the domain.

We are taking what can be viewed as a ‘second
generation knowledge engineering’ approach to con-
structing our Common Sense Enterprise Model.
Rather than extracting rules from experts, we are
building models of domains by ‘engineering ontolo-
gies’. Ontologies are shared views of parts or do-
mains of the world. They provide conceptualizations
that are agreed upon by people engaged in collabora-
tive action or the development of various artifacts,
including software. The shared nature of these con-
ceptualizations allows people or programs to com-
municate effectively and supports the development
of information systems by building interoperable

0166-3615/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved
SSDI 0166-3615(95)00079-8

124 M.S. Fox et al. / Computers in Industry 29 (1996) 123-134

components that view and manipulate information in
a unified, clearly defined and consistent manner.

An ontology consists of formal descriptions of
entities and their properties, relationships, con-
straints, behaviours. Our approach to engineering
ontologies begins with defining an ontology’s re-
quirements; this is in the form of questions and
issues that an ontology must be able to address. We
call this the competency of the ontology. The second
step is to define the terminology of the ontology -
its objects, attributes, and relations. The third step is
to specify the definitions and constraints on the
terminology, where possible. The specifications are
represented in First Order Logic and implemented in
Prolog. Lastly, we test the competency of the ontol-
ogy by ‘proving’ the competency questions with the
Prolog axioms.

Our initial efforts have focused on ontologies to
support reasoning in industrial environments. The
tasks that we have targeted to support are in ‘supply

chain management’ which extends MRP (Manufac-
turing Requirements Planning) to include
logistics/distribution and ‘Concurrent Engineering’
which looks at issues of coordination of engineering
design. Much of our effort has been in creating
representations of organisation behaviour: activity,
state, causality and time, and the objects they manip-
ulate: resources [7], inventory, orders and products.
We also have efforts underway in formalising
knowledge of IS0 9000 quality [13], activity-based
costing [21] and organisation agility.

This paper describes the organisation ontology

being developed as part of the TOVE Project. In
particular it focuses on organisation structure, roles,
authority and empowerment.

2. What is an organisation?

We consider an organisation to be a set of con-
straints on the activities performed by a set of collab-
orating agents. This view follows that of Weber [22]
who views the process of bureaucratization as a shift
from management based on self-interest and person-
alities to one based on rules and procedures.

Mintzberg 1161 provides an early (and informal)
analysis of organization structure distinguishing

among five basic parts of an organization and five
distinct organization configurations that are encoun-
tered in practice. This ‘ontology’ includes several
mechanisms that together achieve coordination, like
goals, work processes, authority, positions and com-
munication. The various parts of an organization are
distinguished by the specific roles they play in
achieving coordination with the above means.

The ‘language/action perspective’ [23] on coop-
erative work in organizations provides an ontology
that emphasizes the social activity by which ‘agents’
generate the space of cooperative actions in which
they work, rather than the mental state of individu-
als. The basic idea is that social activity is carried
out by language and communication. The pragmatic
nature of communication as the way of creating
commitments among participants is exploited in the

Coordinator system [S].
In the same vein, Auramaki [11 presents a method

for modeling offices as systems of communicative
action through which people engage in actions by
creating, modifying and deleting commitments that
bind their current and future behaviors.

The work of Lee [141 looks at language acts in the
bureaucratic office, viewing language not as a mech-
anism for information transfer but as a mechanism
for social interaction and control. He presents a
logic-based representation of deontic notions - au-
thorization, permission, prohibition and the like - and
shows how this can be used to model cooperative
work in the office.

More recently, Yu and Mylopoulos [24] have
proposed a framework for modeling organizations as
being made of social actors that are intentional,
having motivations, wants and beliefs and strategic,
evaluating their opportunities and vulnerabilities with
respect to each other. This formal model is used to
explore alternative process designs in business
reengineering.

3. Ontology competence

A problem in the engineering of ontologies is
their evaluation. A number of criteria have been
proposed including [9,10]:

MS. Fox et al./Computers in Industry 29 (1996) 123-134 125

- Generality. To what degree is the representation
shared between diverse activities such as design
and trouble-shooting, or even design and market-
ing?

- Competence. How well does it support problem
solving? That is, what questions can the represen-
tation answer or what tasks can it support?

- Perspicuity. Is the representation easily under-
stood by the users? Does the representation

‘document itself?’
- Transformability. Can the representation be easily

transformed into another more appropriate for a

particular problem?
* Extensibility. Can the representation be extended

to encompass new concepts?
- Granularity. Does the representation support rea-

soning at various levels of abstraction and detail?
* ScaZability. Does the representation scale to sup-

port large applications?
- Minimality. Is there a core set of ontological

primitives that are partitionable or do they over-

lap in denotation? A minimal set of terms should
be in the ontology.

But the criterion we have found most useful is
competence. For any task in which the ontology is to
be employed, the task imposes a set of requirements
on the ontology. Tlhese requirements can best be
specified as a set of queries that the ontology should
be able to answer, if it contains the relevant informa-
tion These requirements, which we call competency
questions, are the basis for a rigorous characteriza-
tion of the information that the ontology is able to
provide to the task. Competency questions are
benchmarks in the sense that the ontology is neces-
sary and sufficient to satisfy the task requirements
specified by the competency questions. They are also
those questions for which the ontology finds all and
only the correct solutions. Tasks that specify their
requirements as competency questions can serve to
drive the development of new ontologies and also to
justify and characterize the capabilities of existing

ontologies.
The basic entities in the TOVE ontology are

represented as objects with specific properties and
relations. Objects are structured into taxonomies and
the definitions of ob,jects, attributes and relations are
specified in first-order logic. An ontology is defined

in the following way. We first identify the objects in
our domain of discourse; these will be represented
by constants and variables in our language. We then
identify the properties of these objects and the rela-
tions that exist over these objects; these will be
represented by predicates in our language.

We next define a set of axioms in first-order logic
to represent the constraints over the objects and
predicates in the ontology. This set of axioms pro-
vides a declarative specification for the various defi-

nitions and constraints on the terminology. Further,
we need to prove the competency of the ontology.
The ontology must contain a necessary and sufficient
set of axioms to represent and solve these questions,
thus providing a declarative semantics for the sys-
tem. It is in this sense that we can claim to have a
competent ontology, and it is this rigor that is lack-
ing in previous approaches to ontology engineering.

The competency questions are generated by re-
quiring that the ontologies be necessary and suffi-
cient to support the various tasks in which it is
employed. Within our applications, these include:

0 Planning and scheduling - what sequence of ac-
tivities must be completed to achieve some goal?
At what times must these activities be initiated

and terminated?
* Temporal projection - Given a set of actions that

occur at different points in the future, what are
the properties of resources and activities at arbi-
trary points in time? This includes the manage-
ment of resources and activity-based costing
(where we are assigning costs to resources and
activities).

* Execution monitoring and external events - What

are the effects on the enterprise model of the
occurrence of external and unexpected events
(such as machine breakdown or the unavailability
of resources)?

- Hypothetical reasoning - what will happen if we
move one task ahead of schedule and another task
behind schedule? What are the effects on orders if
we buy another machine?

- Time-based competition - we want to design an
enterprise that minimizes the cycle time for a
product [4]. This is essentially the task of finding
a minimum duration plan that minimizes action
occurrence and maximizes concurrency of activi-
ties.

126 MS. Fox et al./Computers in Industry 29 (1996) 123-134

4. Activity/Time Ontology

In this section we define the ontology of time and
action that is used to represent the behaviour of the
organisation. An important component of represent-
ing behaviour is the ability to temporally project, that
is, to determine the possible set of future states given
a current state. Temporal projection induces the fol-

lowing set of requirements on the ontologies:
- Temporal projection requires the evaluation of the

truth value of a proposition at some point in time
in the future. We therefore need to define axioms
that express how the truth of a proposition changes
over time. In particular, we need to address the
frame problem and express the properties and
relations that change or do not change as the
result of an activity.

- We must define the notion of a state of the world,
that is, define what is true of the world before and
after performing different activities. This is neces-
sary to express the causal relationship between
the preconditions and effects of an activity.

- The time interval over which the state has a
certain status is bounded by the times at which
the appropriate actions that change status occur.
This interval defines the duration of a state if the
status is enabled. This is essential for the con-
struction of schedules.

- We want a uniform hierarchical representation for
activities (aggregation). Plans and processes are
constructed by combining activities. We must
precisely define how activities are combined to
form new ones. The representation of these com-
bined activities should be the same as the repre-
sentation of the subactivities. Thus aggregate ac-
tivities (sets of activities or processes) should
themselves be represented as activities.

- The causal and temporal structure of states and
subactivities of an activity should be explicit in
the representation of the activity.

4.1. Situation calculus specification

We represent time as a continuous line; on this
line we define time points and time periods (inter-
vals) as the domain of discourse. We define a rela-
tion < over time points with the intended interpreta-
tion that t < t’ iff t is earlier than t’.

One important property that must be represented
is what holds in the world after performing some
action, in order to capture the notion of causality.
How do we express these notions if we have a
continuous time line? The extended situation calcu-
lus of [171 allows us to incorporate the notions of
situations and a time line by assigning durations to

situations.
The intuition behind the situation calculus is that

there is an initial situation, and that the world changes
from one situation to another when actions are per-
formed. There is a predicate Poss(a, (+) that is true
whenever an action a can be performed in a situation
u.

The structure of situations is that of a tree; two
different sequences of actions lead to different situa-
tions. Thus, each branch that starts in the initial
situation can be understood as a hypothetical future.
The tree structure of the situation calculus shows all
possible ways in which the events in the world can

unfold. Therefore, any arbitrary sequence of actions
identifies a branch in the tree of situations.

Further, we impose a structure over situations that
is isomorphic to the natural numbers by introducing
the notion of successor situation [181. The function
do(a, CT) is the name of situation that results from
performing action a in situation (T. We also define
an initial situation denoted by the constant a,.

Situations are assigned different durations by
defining the predicate star&s, t) [171. Each situation

has a unique start time; these times begin at 0 in a,
and increase monotonically away from the initial

situation.
To define the evaluation of the truth value of a

sentence at some point in time, we will use the
predicate hoZds(f, C) to represent the fact that some
ground literal f is true in situation u. Using the
assignment of time to situations, we define the predi-
cate holds,(f, t> to represent the fact that some
ground literal f is true at time t. A fluent is a
predicate or function whose value may change with
time.

Another important notion is that actions occur at
points in time. The work of Pinto and Reiter [171
extends the situation calculus by selecting one branch
of the situation tree to describe the evolution of the
world as it actually unfolds. This is done using the
predicate actual. To represent occurrences, we then

MS. Fox et al./ Computers in Industry 29 (1996) 123- 134 127

introduce two predicates, occurs(a, u) and
OCCU+(U, t), defined as follows:

occurs(a, cr) = actuCzl(do(a, U))) (1)

occui-ST(a, t) = occurs(a, CT)

A sr-urt(do(a, a), t). (2)

We will now apply this formalism to the represen-
tation of activities in an enterprise.

4.2. Terminology

At the heart of the TOVE Enterprise Model lies
the representation of an activity and its correspond-

ing enabling and caused states ([19,9]). In this sec-
tion we examine the notion of states and define how
properties of activities are defined in terms of these
states. An activity is the basic transformational ac-
tion primitive with which processes and operations

can be represented; it specifies how the world is
changed. An enabling state defines what has to be
true of the world in order for the activity to be
performed. A caused state defines what is true of the
world once the activity has been completed.

An activity, along with its enabling and caused
states, is called an activity cluster. The state tree
linked by an enables relation to an activity specifies
what has to be true in order for the activity to be
performed. The state tree linked to an activity by a
causes relation defines what is true of the world
once the activity has been completed. Intermediate
states of an activity c,an be defined by elaborating the
aggregate activity into an activity network.

In TOVE there are four terminal states repre-
sented by the following predicates: use(s, a), con-
sume(s, a), releusecs, a), producefs, a). These predi-
cates relate the state with the resource required by
the activity. Intuitively, a resource is used and re-
leased by an activity if none of the properties of a
resource are changed when the activity is success-
fully terminated and the resource is released. A
resource is consumed or produced if some property
of the resource is changed after termination of the
activity; this includes the existence and quantity of
the resource, or some arbitrary property such as
color. Thus consume’rs, a) signifies that a resource is

to be used up by the activity and will not exist once
the activity is completed, and producefs, a) signifies
that a resource, that did not exist prior to the perfor-
mance of the activity, has been created by the activ-
ity. We define use and consume states to be enabling
states since the preconditions for activities refer to
the properties of these states, while we define release
and produce states to be caused states, since their
properties are the result of the activity.

Terminal states are also used to represent the
amount of a resource that is required for a state to be
enabled. For this purpose, the predicate
quuntityfs, r, q) is introduced, where s is a state, r is
the associated resource, and q is the amount of
resource r that is required. Thus if s is a consume
state, then q is the amount of resource consumed by
the activity, if s is a use state, then q is the amount
of resource used by the activity, and if s is a produce
state, then q is the amount of resource produced.

A state may have a status whose value is one of
the following constants: {possible, committed, en-

abled, completed, disenubled, reenubled). The status
of a state is changed by one of the following actions:
commit(s, a), enublecs, a), complete(s, a),

disenublefs, a), reenublecs, a). Note that these actions
are parametrized by the state and the associated
activity.

Similarly, activities have a status whose value is

one of the following constants: {dormant, executing,
suspended, completed). The status of an activity is
changed by one of the following actions: execute(u),

suspend(u), complete(u).
As part of our logical specification of the activity

ontology, we define the successor axioms that spec-

ify how the above actions change the status of a
state. These axioms provide a complete characteriza-
tion of the value of a fluent after performing any
action, so that we can use the solution to the frame
problem in [181. Thus if we are given a set of action
occurrences, we can solve the temporal projection
problem (determining the value of a fluent at any
point in time) by first finding the situation containing
that time point, and then using the successor axioms

to evaluate the status of the state in that situation.
We present one of the successor axioms in the
ontology:

The status of a state is committed in a situation iff
either a commit action occurred in the preceding

128 MS. Fox et al. /Computers in Industry 29 (1996) 123-134

situation, or the state was already committed and an
enable action did not occur.

(Vs, a, e, c+)hoZds(stutus(s, a, committed),

d+?,(T)) =(e=commit(s,a)

A hoZds(stutus(s, a, possible), u))

V 7 (e = enuble(s, u))

A holds(stutus(s, a, committed), a). (3)

A more complete specification can be found in

Dll.

5. Competency

In linking the structure of an organisation with the
behaviour of agents within the organisation, we must
define how the organisation ontology is integrated
with the activity ontology.

If we consider organisation to be a set of con-
straints on the activities performed by agents, then
the competency questions for the organisation ontol-
ogy are extensions of the temporal projection and
plan existence problems to incorporate the abilities
and obligations of agents. The temporal projection
problem is used to characterize the constraints that
agents must satisfy to be able to perform activities,
and plan existence characterizes the set of achievable

goals. We can then propose the following set of
competency questions for the organisation ontology.

5.1. Structure

What is the structure of the organisation? How is
the organisation decomposed into units?
What are the members of a particular unit of the
organisation?
What positions exist in the unit?
What position does person X occupy?

Who must person X communicate with?
What kinds of information does person X com-
municate?
Who does X report to?

5.2. Behuviour

* What are the goals of the unit?
* What are the goals of the position?

. What are the goals of person X?
0 What activities must a particular position per-

form?
* What activities must person X perform?
- Is it possible for an agent to perform an activity

in some situation? That is, does the agent have

the ability to perform the activity?

5.3. Authority, empowerment and commitment

What resources does the person have authority to
assign?
What activities may a person execute without
explicit permission?
In order to perform a particular activity, whose
permission is needed?
Is an agent allowed to perform an activity in
some situation?
What goals is person X committed to achieving?
Is a goal achievable by an agent given its current
commitments and the commitments of other
agents?
If a goal is unachievable for a given set of agents,
how can they be empowered to be capable of
performing the activities to achieve the goal?
That is, how can the constraints defining empow-
erment for the agents be modified so as to be able
to achieve the goal?
What authority constraints are necessary among a
set of agents in order to achieve a goal?

5.4. Goal achievement

What goals are solitarily unachievable for a given
agent? That is, what goals are unachievable using
a plan that contains only activities that the agent
is capable of performing? Such goals require the
assistance of other agents to achieve them.
What goals are achievable by an agent given the
effects of activities that other agents are capable
of performing?
If a goal is solitarily unachievable for a given
agent, what agents are required to assist the agent
in achieving the goal?

Description logic specification

It is important to be as precise as possible when
describing ontologies. For this reason, logic is a

M.S. Fox et al./Computers in Industv 29 (19961 123-134 129

natural choice as an ‘ontology specification language.
In the previous secti’ons we have talked about activ-
ity in a temporal projection framework using situa-
tion calculus. In the next sections we describe the
organization ontology using a more structured nota-
tion for logic (known as description logics [6,5,15,2])
that allows more concise specifications of structured
concepts and a general object oriented organization.

The main entities of the language are concepts,
roles and instances. Concepts are equivalent to unary
predicates describing a class of individuals and are
generally specified as conjunctions of descriptions.
Defined concepts contain necessary and sufficient
conditions for an individual to belong to the respec-
tive concept. Primitive concepts contain only neces-
sary conditions. Primitive concepts can be explicitly
used as components of other concepts and sets of
them can be declared as disjoint. Roles describe
binary relations between a domain and a range con-

cept. Roles can be composed by conjunction from
other roles. Instances are by definition disjoint and
represent particular individuals. Table 1 shows some
of the description types we use. The interpretation
I(d) of a description d is the set of individuals
represented by d, r(x,y) states that x and y are related
through the r role and C(x) states that x belongs to
concept C.

Based on the descriptors in Table 1, we also use
(:some r C) which is a more perspicuous notation for

(:and (:a11 r CX:atieast 1 r)) and (:the r C) which is a
notation for (:and (:adl r CX:atleast 1 &atmost 1 r)).
The descriptor (:one:of fl f2 . . fn) denotes a set of
fillers from which only one will actually fill a given

role in an instance.

7. Organisation terminology

7.1. Organisation

To begin, an organization consists of a set of

Organisation-Agents (said to be members of the
organisation), a set of Organisation-Units (recursive
subcomponents having a structure similar to organi-
sations) and an Organisation-Goal tree that specifies
the goal (and its decomposition into subgoals) the
members try to achieve. Using the description logic

concept language, the concept of organisation can be
specified as:

(concept organization :is(:and org-entity
(:some org-goal organisation-goal)
(:some org-unit organisation-unit)
(:some member organisation-agent)))

The Organisation-Unit recursively describes the
sub-organizations that compose an organisation:

(concept organisation-unit :is (:and org-entity
(:the member-of organisation)
(:some unit-goal organisation-goal)
(:some unit-member organisation-agent)
(all unit organisation-unit))).

For example, the Department of Industrial Engi-

neering (1E)can be modeled as an organisation hav-
ing: a number of goals related e.g. to education and

research, component units like the Enterprise Integra-
tion Laboratory (EIL), the Human-Computer Inter-
faces Laboratory, etc. and a number of organisation
agents consisting of faculty, research staff, students,
etc. Equally, the Department of Industrial Engineer-
ing can be seen as an organisation-unit member of
the Faculty of Applied Science and Engineering
(ASE) which at its turn is an organisation unit
member of the University of Toronto @off).

If 0 is a particular organisation, we represent this

as an assertion organisation(0). For example, we can
have

organisation(IE),
organisation(ASE)
organisation(Uoff).

To represent the fact that Industrial Engineering
(IE) is a member of Applied Science and Engineer-
ing (ASE) we use a binary assertion:

member-of(IE, ASE).

7.2. Organisation agent

A concept found in almost all of the literature is
that of an agent. An agent performs activities in
order to achieve one or more goals. An agent can be
a human being, a computer program, or a group of
people and/or programs.

130 MS. Fox et al. / Computers in Industry 29 (1996) 123-134

Indiuidual-Agent and Group-Agent are subclasses
of Organisation-Agent. They represent either indi-

viduals, like employees and contractors, or groups
like teams, boards of directors, etc.

In the concept language, Organisation-Agent is

described as:

(concept organisation-agent :is Cand org-entity
(:some org-membership (or organization organisa-
tion-unit))
(:some agent-position organisation-position)
(:some agent-empowerment empowerment)
(:a11 agent-communication-link communication-
link))).

For example, to represent the fact that MB and
MG are organisation agents of IE, we write:

organisation-agent
organisation-agent
org-membership(MB, IE)
org-membership(MG. IE).

7.3. Organisation-role

An Organisation-Role defines a prototypical
function of an agent in an organisation. A particular
agent can assume several roles at the same time. For
an individual agent, examples of organisational roles
include ‘project manager’, ‘reviewer’, ‘troub-
leshooter’, etc. Once an agent is assigned to a role,
that creates a commitment (more on commitments
later) on the agent’s part to act to achieve the goal(s)
of the role.

We define Organisation-Roles as follows:

(concept org-role :is (:and org-entity
Csome role-goal organisation-goal)
Call role-skill skill)
Call role-process organisation-activity)
(:a11 role-policy policy)
(:a11 role-communication-link communication-

link))).

Each Organisation-Role has:

* Goals: one or several goals which the agent play-
ing the role is responsible for. Example: role-
goal(project-manager, manage-cost).

* Skills: one or more skills required to achieve the
goals. Example: role-skill(project-manager, cost-
estimation).

* Processes: activity networks that have been de-
fined to achieve the goals. Example: role-
process(project-manager, hire-personnel).

- Policies: constraints on the performance of the
role’s processes. These constraints are unique to
the organisation role. Example: role-policy(pro-
ject-manager, equal-opportunity-hiring).

- Communication-Link: these are communication
links to other agents in specified roles. Communi-
cation consists of exchanging speech acts accord-
ing to specific conversation structures that are
also formally represented [3].

Example:
role-communication-link(project-manager, comm-
link-to-technology-VP).

7.4. Organisation position

An Organisation-Position defines a formal posi-
tion that can be filled by an OA in the organisation.
Examples of positions include ‘president’, ‘labora-
tory director’, ‘senior researcher’, ‘sales-representa-
tive’, etc. Any position essentially consists of a set of
roles the agent filling it will have to carry out. Thus,
positions are the means to relate agents to roles and
goals. For example, the ‘laboratory director’ position
would include roles for project supervision, securing
financing, liaison with sponsors, etc.

Second, positions define certain authority rela-
tions with other positions in the organization. The
‘laboratory director’ position for example also im-
plies authority over any ‘senior researcher’ position
in the respective organisation unit.

We define the Organisation-Position concept as:

(concept organisation-position :is(:and org-entity
(:some position-role organisation-role)
Call authority-over organisation-position)
(:the filled-by organisation-agent)))

Examples:
organisation-position (laboratory-director)
position-role (laboratory-director project-supervi-
sion)
position-role (laboratory-director securing-financ-

ing)
filled-by (laboratory-director, MSF).

With respect to the last example above, in general
we assume that positions are filled by individual

MS. Fox et al./ Computers in Industry 29 (1996) 123-134 131

agents. Note however that a group agent may also
fill a position.

7.5. Organisation goal

Organisation agents play roles that assume goals
to achieve. Our ontology models organisation goals
that can be decomposed into and-or subgoal trees,
can be achieved by executing activity clusters and
have dependency relations amongst them. A goal Gl
is said to depend on a goal G2 if achieving Gl
depends on having achieved G2 in a previous situa-
tion. If the dependency is weak, Gl could still be
achieved even if G2 is not, although more difficulty.
If the dependency is strong, Gl can not be achieved
unless G2 has been achieved previously.

(concept organisation-goal :is (:and org-entity
(:the goal-description string)
(:a11 goal-activity activity)
(:a11 dependency goal-dependency)
(:some held-by-agent org-agent)))

(concept and-goal :is (:and organisation-goal
(:some conjunct organisation-goal)))

(concept or-goal 5,s (:and organisation-goal

(:some disjunct organisation-goal)))

(concept goal-dependency :is (:and org-entity
(:the depender otganisation-goal)
(:the dependee organisation-goal)
(:the dependency-strength (:oneof strong weak))))

7.6. Communication,-link

Communication-Links are established among or-
ganisational agents i.n various roles. We distinguish
between two forms of communication links. Znfor-

mation-Links capture the notion of benevolent com-
munication in which agents regarding each other as
peers volunteer information that they believe rele-
vant to other agents. This exchange does not create

obligations for any agent. Communication-with-

Authority links are .used to send/receive communi-
cation that creates obligations according to the estab-
lished authority relations in the organisation. They
are used for example to request agents to commit to
given goals or to report on the execution status of
activities.

The Information-Link is a unidirectional link used
to communicate information from one agent to an-
other. It describes, for an agent in a given organisa-
tional role, the information it is interested in receiv-

ing and the information it can benevolently distribute
to others.

For example, an agent in the ‘C + + program-
mer’ role may distribute information about the state
of the file server to other programmers, alerting them
each time the server is down.

The Communication-with-Authority link, used
when communication is intended to create obliga-
tions, specifies the two agents, one in the authority
position, among which communication takes place.
Because we model communication as exchange of
speech-acts, authority of an agent appears as the set
of speech-acts this agent can use in order to create
obligations for the other agent. For example, an

agent may have authority to request another agent to
perform action Al, but not to perform action A2. In
this case, the second agent will have to commit to
achieving Al when requested by the first agent, but
not A2.

The Communication-with-Authority concept is
defined as follows:

(concept communication-with-authority
:is (:and communication-link
(:the committing-agent org-agent)

(:the committing-agent-role org-agent)
(:the committed-agent org-agent)
(:the committed-agent-role org-agent)
(:a11 authority-for speech-act))).

The authority relationship is defined among agents
in given organisation roles. An agent in a ‘project-
manager’ role can request an another agent in a
‘programmer’ role to write a program for a given
function, but can not request the second agent to,
say, make a coffee. This is because writing programs
is a goal of the ‘programmer’ role, while making
coffee is not.

7.7. Authority and commitment

We have introduced the concept of an organisa-
tion agent’s commitment to achieving a goal. The
predicate committed-to(OA, G> signifies that Organ-
isation-Agent OA is committed to the achievement

132 M.S. Fox et al./Computers in Industry 29 (I996) 123-134

of Goal G. Consequently, the totality of activities
performed by OA must include the achievement of
G. Prioritisation of goals, etc. are not considered
here.

We use authority to refer to the control relation-
ship that exists between two organisational agents.
For OA, to have authority over OA, implies that
OA L is able to extract a commitment from OA, to
achieve a goal that is defined as part of OA,‘s
organisation-roles. In order to extract that commit-
ment, OA, has to be related directly or indirectly by
an authority-link relation that is created either as a
consequence of the organisational positions of the
agents (see the Organisation-Position) or of Commu-
nication-with-Authority links among agents:

8. Empowerment: Linking structure and behavior

With the introduction of organisational knowl-
edge, we now have to address the problem of how to
specify ‘who can do what’. That is, what is the set of
activities that an OA is allowed to perform as a
member of the Organisation. It would appear that by

associating processes with OAs via the role-process

property, we have solved the problem. That is, an
OA can perform any activities specified by its pro-
cesses. But consider the following situation:

“Jill, in her role as a CNC machine operator, has a
process she must perform in order to achieve the
goal of producing an order. The process is composed
of three activities: 1) machine-setup, 2) machine-run
and 3) machine-teardown. But before the machine-
run activity can commence, she must receive permis-
sion from her supervisor.”

The problem is that Jill has a process that speci-
fies a sequence of activities that she must perform.

But she cannot perform the second activity, machine-
run, without permission. The implication is that
within our Activity ontology, she is not allowed to
change the state of the machine-run activity to ‘ex-
ecute’ .

An obvious way to solve the problem is to insert a
fourth activity between machine-setup and machine-
run where she seeks approval from her supervisor. If
approval is obtained, then she can commence the

subsequent machine-run activity. Again we have a
problem. Who is allowed to change the status of this
new approval activity to completed? If Jill is allowed
to make any status changes she wants to the activi-
ties in her process, she can change the status of the
approval activity regardless of whether she obtained
approval or not.

The problem lies with who is allowed to make
status changes to states and activities. When Jill goes
to her supervisor for permission, is it Jill who changes
the status of the approval activity to ‘completed’ or
her supervisor? It is not clear. Therefore the only
solution to the problem of permission to perform an
action lies in precisely stating who is allowed to
change the status of the activity, e.g., from ‘dormant’
to ‘executing’.

We introduce the concept of Empowerment as a
means of specifying the status changing rights of an
OA. Empowennent is the right of an OA to pegorm

status changing actions, such as commit, enable,
suspend, etc. Empowerment naturally falls into two
classes: state and activity empowerment.

State empowerment specifies the range of stati
through which an OA may take a state by perform-
ing the appropriate actions, such as commit. State
empowerment not only specifies allowable status
changes but may be used to restrict the set of re-
sources an OA is empowered to commit to a
use/consume state. An OA may be empowered for
any type of resource, including other OAs. The
implication being the first OA may commit the
second to a state.

Activity empowerment specifies the range of stati
through which an OA may take an activity by per-
forming the appropriate actions, such as execute and
suspend. Even though an activity may be enabled,
the OA whose role contains the plan which contains
the activity may not be empowered to start its execu-
tion.

With the addition of empowerment, a second type
of authority arises. That is, the supervising agent
may alter what a supervisee is empowered to do.

We now present a number of axioms meant to
clarify the meaning of empowerment.

First, for any activity a that requires that the
agent be empowered, the status changing actions for
the activity require holds(activity_empowered
(agent, a), u) as a precondition.

M.S. Fox et al./Computers in Industry 29 (1996) 123-134 133

Similarly, for any state s that requires that the

agent be empoweredl, the status changing actions for
the activity require holds(state_empowered

(agent, s), u) as a precondition.
1. It is possible to for one agent to empower

another agent for an activity if the first agent super-
vises the second, and the supervisor is empowered
for that activity.

Poss(activizj_empowers(agent, agent’, a) , u)

= hoZds(supervises(agent, agent’), CT)

A hoZds(activity__empowered(agent, a), cr) .

(4)

2. It is possible to for one agent to disempower
another agent for an activity if the first agent super-
vises the second, and the supervisor is empowered
for that activity.

Poss(activity_disenzpowers(agent, agent’, a) , CT)

= hoZds(supervises(agent, agent’), a)

A hoZds(actiuity__empowered(agent, a), a).

(5)

3. An agent is empowered for an activity only as
a result of the action activity_empowers, and is no

longer empowered only as a result of the action
activity_disempowers.

hoZds(activity_empowered(agent, a), do(a’, a))

= (3agent’)a’

= activity_empowers(agent’, agent, a)

V hoZds(activity empowered(agentV a) 9 u)

A 7 (3agent’)a’

= activity_disempowers(agent’, agent’, a). (6)

4. It is possible to for one agent to empower
another agent for clnanging the status of states if the
first agent supervises the second, and the supervisor
is empowered for changing the status of that state.

Poss(state_empowers(agent, agent’, s) , CT)

= hoZds(supervises(agent, agent’), a)

A hoZds(state_empowered(agent, s) , a). (7)

5. It is possible to for one agent to disempower
another agent for changing the status of that state if

the first agent supervises the second, and the supervi-
sor is empowered to change the status of that state.

Poss(state_disempowers(agent, agent’, s) , a)

= hoZds(superuises(agent, agent’), u)

A hoZds(state_empowered(agent, s) , u) . (8)

6. An agent is empowered for changing the status
of a state only as a result of the action state-em-

powers, and is no longer empowered only as a result
of the action state_disempowers.

hoZds(state_empowered(agent, a), do(a’, u))

= (3agent’)a’ = activity_empowers(agent’, agent, a)

V hoZds(state_empowered(agent, a), a)

A 7 (3agent’) a’

= state_disempowers(agent’, agent’, a) . (9)

9. Conclusions

The paper presents our preliminary exploration
into an organisation ontology for the TOVE enter-
prise model. The ontology views organisations as
composed of agents playing roles in which they are
acting to achieve specific goals according to various
constraints defining the ‘rules of the game’. A pri-

mary focus has been in linking structure and be-
haviour through the concept of empowerment. Em-
powerment is the right of an organisation agent to
perform status changing actions. This linkage is criti-
cal to the unification of enterprise models and their
executability.

The ontology is currently being used by members
of our group to model activity-based costing [21],
ISO- quality [13] and is also at the basis of an
advisor that suggests ways to reengineer an organiza-
tion to increase its responsiveness to changing mar-
ket demands. Even so, much work still remains to be

done in the development of our ontology and espe-
cially its axiomatisation.

Acknowledgements

This research is supported, in part, by the Natural
Science and Engineering Research Council, Manu-

134 M.S. Fox et al. / Computers in Industry 29 (19961 123- 134

facturing Research Corporation of Ontario, Digital
Equipment Corp., Micro Electronics and Computer
Research Corp., Spar Aerospace, Carnegie Group
and Quintus Corp.

References

111

[21

131

[41

[51

[61

[71

h31

E. Auramaki, E. Lehtinen and K. Lyytinen, “A speech-act-

based office modelling approach”, ACM Transactions on

Office Information Systems 6(2) (1988). 126-152.

M. Barbuceanu, “Models: Toward integrated knowledge

modeling environments”, Knowledge Acquisition 5 (1993)

245-304.

M. Barbuceanu and MS. Fox, “COOL: A language for

describing coordination in multiagent systems”, First Inter-

national Conference on Multiagent Systems, San Francisco,

12-14 June 1995.

J. Blackbum, “Time-based competition”. Business One Ir-
win (1991).

A. Borgida, R.J. Brachman, D.L. McGuiness, L.A. Resnick,

‘CLASSIC: A structural data model for objects”, Proc.

1989 ACM SIGMOD International Conference on Manage-

ment of Data (June 1989) 59-67.

R.J. Brachman and J.G. Schmolze, “An overview of the

KLONE knowledge representation system”, Cogniriue Sci-

ence 9(2) (1985) 171-216.

F. Fadel, M.S. Fox and M. Gruninger. “A resource ontology

for enterprise modelling”, Third Workshop on Enabling

Technologies-Infrastructures for Collaboratioe Enterprises,

West Virginia University, Morgantown, WV, 1994.

F. Flores, M. Graves, B. Hartfield and T. Wionograd, “Com-

puter systems and the design of organizational interaction”,

ACM Transactions on Ofice Information Systems 6(2) (1988)

153-172.

[9] M.S. Fox, J. Chionglo and F.A. Fadel, “Common-sense
model of the enterprise”, Proceedings of the Industrial

Engineering Research Conference 1993.

[lo] T.R. Gruber, “Toward principles for the design of ontologies

used for knowledge sharing”, Report KSL 9304, Stanford

University, August 1993.

1111 M. Gruninger and M.S. Fox, “The role of competency

questions in enterprise engineering”, Proceedings of the

IFfP WCS.7 Workshop on Benchmarking - Theory and

Practice, Trondheim, Norway, June 1994.

[12] N.R. Jennings, “Commitments and conventions: The founda-

tion of coordination in multi-agent systems”, The Knowledge

Engineering Review S(3) (1993) 223-250.

[13] H. Kim and M.S. Fox, “Quality systems modelling: A

prospective for enterprise integration”, Fourth Annual Meet-

ing of the Production and Operations Management Society,

1993.

1141 R.M. Lee, “Bureaucracies as deontic systems”, ACM

Transactions on Office Information Systems 6(2) (1988) 87-

108.

1151 R. McGregor and R. Bates, “The LOOM knowledge repre-

sentation language”, ISI-IRS-87-188, USC/IS1 Marina Del

Rey, CA, 1987.

[161 H. Mintzberg, Srructure in Fiues - Designing Effectire

1171

iI81

1191

[201

[211

1221

[231

Organizations, Prentice Hall Inc., New York,- 1983. “”

J. Pinto and R. Reiter, “Temporal reasoning in logic pro-

gramming: A case for the situation calculus”, Proceedings

of the Tenth International Conference on Logic Program-

ming, Budapest, June 1993.

R. Reiter, “The frame problem in the situation calculus: A

simple solution (sometimes) and a completeness result for
goal regression”, Artificial Intelligence and Mathematical

Theory of Computation: Papers in Honor of John McCarthy,

Academic Press, San Diego, CA, 1991.

A. Sathi, M.S. Fox and M. Greenberg, “Representation of

activity knowledge for project management”, lEEE Transac-

tions on Pattern Analysis and Machine Intelligence, PAMI-

7:531-552, September 1985.

J. Searle, Speech Acts, Cambridge University Press, Cam-
bridge, UK, 1969.

D. Tham, MS. Fox and M. Gruninger, “A cost ontology for
enterprise modelling”, Third Workshop on Enabling Tech-

nologies-Infrastructures for Collaboratiae Enterprises, West

Virginia University, Morgantown, WV, 1994.

M. Weber, Economy and Society, University of California

Press, Berkeley, CA, 1987.

T. Winograd, “A language/action perspective on the design

of cooperative work”, Human Computer Interaction 3(1)

(1987-19881, 3-30.

1241 E.S.K. Yu and J. Mylopoulos, “From E-R to ‘A-R-modell-

ing strategic actor relationships for business process reengi-

neering’ ’ , 13th Int. Conf on the Entity-Relationship Ap-

proach, Dec. 13-16 1994, Manchester, UK.

