FLOWS: A First-Order Ontology for Semantic Web Services *

Michael Griininger! Richard Hull} Sheila Mcllraith?
June 20, 2008

We argue that an unambiguously, computer-interpretable description of the process model of a Web service, and
a client’s constraints on that process model, are critical to automating a diversity of tasks, including Web service
discovery, invocation, composition, monitoring, verification and simulation. That the process model descriptions be
unambiguously computer-interpretable is key to our argument, and is a shortcoming of a number of existing process
modeling frameworks that have been proposed to describe aspects of Web services.

We commence this position paper with a brief overview of some existing process modeling frameworks used within
the Web service community, providing analysis of some of their key merits and shortcomings. Next we present a small
number of use cases that motivate and illustrate the need for computer-interpretable process models for the automation
of Web service discovery and composition. With our use cases in hand, we propose a set of desiderata for a Web
service description language that enables an unambiguous description of Web service process models. Our working
hypothesis is that the process model be described as an ontology of first-order logic. To this end, we present the
Process Specification Language (PSL) [?, ?], a first-order logic ontology for modeling processes, as a straw proposal
for a foundation from which a Web service process modeling framework can be developed.

The opinions expressed in this position paper reflect the position of the Semantic Web Services Language Com-
mittee (SWSL), a subcommittee of the joint North American-EU Semantic Web Services Intitiative (SWSI). They are
included in FLOWS, the SWSL Committee’s First-order Logic Ontology for Web Services [?].

1 Current State of Process Modeling for Web Services

A Web service process model describes the program that implements a Web service. Over the past 4 years, industry
has proposed a number of process modeling languages for describing the process models of Web services. Examples
include Microsoft’s XLANG, a Web service process modeling language based on pi-calculus; IBM’s WSFL based on
Petri Nets; BPEL4WS, a Microsoft, IBM, BEA, SAP and Siebel effort, which merges XLLANG and WSFL; HP’s Web
Service Conversation Language (WSCL); BEA, Intalio, SAP and Sun’s Web Service Choreography Interface (WSCI);
BPML, backed by the Business Process management initiative; the XML Process Description Langauge (XPDL)
backed by the Workflow Management Coalition; the Business Process Specification Schema (BPSS) of ebXML,; and
now under development, a W3C Choreography effort, which draws on pi-calculus. While not exhaustive, this list
identifies some of the major efforts in Web

In evaluating and comparing existing Web service process modeling efforts, a key observation is that these efforts
were designed to address a diversity of process management tasks. Some like BPELAWS were designed to address
Web service orchestration issues and to standardize workflow and execution with the objective of increasing transaction
reliability and synchronization. Others have focused on issues of Web service choreography, requiring defining the
sequence and conditions under which multiple cooperating independent agents exchange messages in order to perform
a task to achieve a goal'. As a consequence of the diversity of uses for which these languaes have been designed,

*This position paper resubmits many of the points raised in a previous position paper by the authors [?].

TNational Institute of Standards and Technology, Gaithersburg, MD, USA

fLucent Technologies, Murray Hill, NJ, USA

§(Contact Author) University of Toronto, Toronto, ON, Canada, Email: sheila@cs.toronto.edu, Phone: 416-946-8484.
Thttp://www.w3.org/TR/ws-glossary/



comparing them based on concept coverage is important, but not necessarily pertinent, as many of these languages
could be extended to incorporate further concept descriptions.

It is our view that the most important shortcoming of these languages, and the one that is least easily addressed,
is their lack of well-defined semantics. Many of these languages have their origins in existing process specification
languages, process algebras, and research in formal methods. Nevertheless, none has a well-defined semantics, except
for XLANG and WSFL, which have effectively been abandonned in favour of BPEL4WS. Without a well-defined se-
mantics, the process model cannot be manipulated, queried and interpretted reliably by a computer program. Adoption
of a process model without a well-defined semantics severely restricts its practical use.

We take the point of view espoused by Semantic Web Services [?], that Web service descriptions should be un-
ambiguously computer-interpretable, and that their concept coverage should be adequate to enable automation of
Web service discovery, invocation, composition, monitoring, verification and simulation. We argue that this vision
necessitates unambiguously computer-interpretable process models, which in turn necessitates having a well-defined
semantics for these process models. We further argue that it requires certain content coverage, not addressed by current
industry Web service process description languages.

In 2001, a coalition of semantic Web researchers, under the auspices of the DARPA DAML program, undertook to
develop an ontology for Web services, using the Semantic Web ontology language DAML+OIL. This has culminated
in the creation of OWL-S (formerly DAML-S) [?] a Web service ontology developed in OWL (the successor of
DAML++OIL) [?]. OWL is an artificial intelligence description logic-based language for describing content on the
Web. Most importantly OWL, and thus OWL-S, has a well-defined semantics, which contrasts it with other efforts.
Unfortunately, OWL has not proven sufficiently expressive to characterize Web service process models. While OWL-S
does indeed have a description of the process model of a Web service, OWL is not sufficiently expressive to denote all
and only the intended interpretations of that process model. As such, like other process modeling languages, the OWL
process model must be human interpretted to resolve ambiguities, or translated to another, richer language, in which
this new model can be unambiguously interpretted by a program. Indeed there have been four efforts towards defining
the intended interpretation of the OWL-S (or DAML-S) process model: a Petri Net-based operational semantics [?],
an interleaving function-based operational semantics based on subtype polymorphism [?], a semantics via translation
to the first-order language of the situation calculus [?], and most recently a semantics provided by translation to PSL,
the National Institute of Standards’ Process Specification Language.

OWL-S has many strong features. In particular, the concept coverage of OWL-S provides a firm foundation for
our process modeling efforts. Further, OWL’s expressiveness limitations, which OWL-S inherits, exist to address the
important trade-off between expressiveness and decidability and tractability, and so, while limiting in this case, are
certainly easily defensible.

Thus, we take OWL-S as our conceptual starting point and adopt much of its conceptual model which we do not
describe here for lack of space. Nevertheless, we differ importantly in our choice of language. Rather than adopting
OWL, we propose a first-order logic language for Web services descriptions. Before describing this language in further
detail, we present a small set of motivating use cases.

2 Motivating Use Cases

In this section we present a small number of use cases that motivate and illustrate the need for computer-interpretable
Web service process models in the context of Web service discovery and composition?. While many of the use cases are
presented as client-side requests, these requests serve as constraints on existing process models and must be answered
by manipulating server-side descriptions of the process models of Web services. As such, the challenge put forth in
these use cases is to develop descriptions of the process models of relevant services, client-side requests, and (ideally)
automated reasoning machinery to process the request.

Use Cases for Automating Web Service Discovery

1. Find me an airline service that enables me to reserve a flight before providing a credit card number.

2We chose these two tasks for diversity. Use cases requiring process modeling can likewise be developed for the other Semantic Web Service
tasks.



2. Find me a book-buying service that returns a list of available second-hand copies of my requested book, if the
book is out of print.

3. Find me a travel service that books hotels, flights and trains and that coordinates the timing. (I.e., that uses the
output of one selection as input to the search for another.)

4. Find me a florist that enables me to pay with PayPal.

5. Find me an online financial advice service that queries www.morningstar.com prior to making mutual fund
recommendations.

Use Cases for Automating Web Service Composition

1. Given a workshop registration service, a flight booking service, a car rental service, a taxi reservation service,
and a hotel service, Ima’s home address, and a Ima’s online schedule, please book Ima Cheapskate’s trip to the
W3C Workshop on Web Services.

2. Modify problem 1, to add the constraints that Ima wants to travel on October 11, from Montreal, return on
October 13 or 14, is unwilling to take an overnight flight, prefers to stay at the Sheraton in Palo Alto, but will
stay at any hotel within 8 miles of the workshop and would like to rent a convertible car, if no rain is forecast.
She does not want to register for the workshop until after her travel plans are made and does not want to rent a
car, preferring a taxi, if her flight arrives in California between 3pm and 6pm.

3 Desiderata Derived from Use Case Analysis

Analysis of these and other use cases confirm the need for a computer-interpretable process model, and prompt a
list of representational desiderata. We simply list these desiderata as follows: model-theoretic semantics, atomic and
composite processes represented as first-class objects in the language, taxonomic representation, leverages OWL-S,
embraces and integrates with exisitng and emerging industry Web service standards, provides for explicit representa-
tion of messages and dataflow, captures activities, process preconditions and program side effects, captures process
execution history.

To address these use cases, we have developed a First-order Logic Ontology for Web Services (FLOWS).

4 FLOWS - A First Order Logic Ontology for Web Services
4.1 The Case for First-Order Logic

OWL is too weak to completely axiomatize the intended semantics of OWL-S, and consequently, any implementa-
tions must resort to extralogical mechanisms if they are to conform to the OWL-S semantics. FLOWS (First Order
Logic Ontology for Web Services) provides a first-order axiomatization of the intended semantics of OWL-S, and
implementations of FLOWS will be able to use the axioms directly.

First-order logic provides a well-understood model-theoretic semantics. Its rich expressive power (e.g., variables,
quantifiers, terms, etc.) overcomes the expressiveness issues that have haunted OWL-S.

First-order logic enables characterization of reasoning tasks for semantic web services in terms of classical notions
of deduction and consistency. For example, web service discovery can be characterized as deductive queries, and
web service composition, reachability, and liveness as satisfiability. This enables exploitation of off-the-shelf systems
such as existing FOL reasoning engines and DB query engines, thereby facilitating implementation and improving our
understanding of the reasoning tasks.

First-order logic has been criticized because it is semi-decidable (as opposed to OWL-DL, which is decidable).
However, the motivating scenarios for semantic web services show that in general we will need to solve intractable
reasoning problems. Intractable reasoning problems are inherently intractable — using a different language does not
make them tractable. The restriction to a language that is tractable simply means that there will exist reasoning
problems that cannot be specified in the language.



Furthermore, many intractable tasks often prove easily solved in practice. One powerful strategy is to explicitly
axiomatize the extensions of a first-order theory that have attractive computational properties. The idea is to focus on
the complexity of a particular first-order theory, and to introduce domain assumptions that can be used to guarantee
that a particular reasoning problem using the theory is tractable.

4.2 FLOWS Overview

The goal of FLOWS is to enable reasoning about the semantics underlying Web (and other eletronic) services, and
how they interact with each other and with the “real world”. FLOWS does not strive for a complete representation of
web services, but rather for an abstract model that is faithful to the semantic aspects of service behavior. Following the
lead of the situation calculii, and in particular the situation calculus semantics [?] of OWL-S, the changing portions of
the real world are modeled abstractly using the notion of fluents. These are first-order logic predicates and terms that
can change value over time. The FLOWS model provides infrastructure for representing messages between services;
the focus here is on the semantic content of a message, rather than, for example, the specifics of how that content is
packaged into an XML-based message payload. FLOWS also provides constructs for modeling the internal processing
of Web services.

FLOWS is intended to enable reasoning about essential aspects of Web service behavior, for a variety of different
purposes and contexts. Some targeted purposes are to support (a) descriptions of Web services that enable automated
discovery, composition, and verification, and (b) creation of declarative descriptions of a Web service, that can be
mapped (either automatically or through a systematic process) to executable specifications. A variety of contexts can
be supported, including: (i) modelling a service as essentially a black box, where only the messaging is observable;
(i1) modelling the internal atomic processes that a service performs, along with the impact these processes have on the
real world (e.g., inventories, financial accounts, commitments); (iii) modelling many properties of a service, including
all message APIs, all or some of the internal processing, and some or all of the internal process and data flows. Of
course, the usability of a Web service description may depend on how much or how little information is included.

It is important to note that the specification of the FLOWS ontology in first-order logic does not presuppose that the
automated reasoning tasks described above will be realized using a first-order logic theorem prover. We can certainly
use FOL to specify solutions to these tasks, using notions of entailment and satisfiability. Nevertheless, while some
tasks may naturally be realized through theorem proving, it has been our experience that most Al automated reasoning
tasks are addressed by special-purpose reasoners, rather than by general-purpose reasoners such as theorem provers.

A key premise of FLOWS is that an appropriate foundation for formally describing Web services can be built as a
family of PSL extensions. PSL — the Process Specification Language — is a formally axiomatized ontology [?] that has
been standardized as ISO 18629. PSL was originally developed to enable sharing of descriptions of manufacturing
processes. FLOWS refines aspects of PSL with Web service-specific concepts and extensions.

A complete description of our FLOWS ontology can be found at [?].

5 Closing Remarks

In closing, we re-articulate our position that an unambiguous computer-interpretable process model of Web service
is essential to automation of many Web service tasks. Our position is embodied in FLOWS, developed first-order
ontology for Web services.



