
USING THE PSL ONTOLOGY

MICHAEL GRÜNINGER

Contents

1. Introduction 2
2. How are Ontologies Used? 2
2.1. Specifying Domain Theories 3
2.2. Semantic Integration 3
2.3. Building New Ontologies 3
3. Basic Ontological Distinctions 4
3.1. Activity and Activity Occurrence 4
3.2. Time 6
3.3. Objects 7
3.4. Composition 7
3.5. State and Change 8
4. Process Descriptions for Atomic Activities 9
4.1. Occurrence Trees 9
4.2. Constraints on Legal Occurrence 9
4.3. Effects 11
5. Process Descriptions for Complex Activities 12
5.1. Activity Trees 12
5.2. Branch Structure 13
5.3. Spectrum and Variation 15
5.4. Distribution 16
5.5. Embedding Constraints 16
6. Specialization of Activities in PSL 18
6.1. Specialization and Classes of Activities 18
6.2. Specialization as Subactivities 18
6.3. Specialization as Constraints on Activities 19
7. Summary 21
References 21

Date: June 26, 2007.

1

2 MICHAEL GRÜNINGER

1. Introduction

Representing activities and the constraints on their occurrences is an integral
aspect of commonsense reasoning, particularly in manufacturing, enterprise mod-
elling, and autonomous agents or robots. In addition to the traditional concerns
of knowledge representation and reasoning, the need to integrate software applica-
tions in these areas has become increasingly important. However, interoperability
is hindered because the applications use different terminology and representations
of the domain. These problems arise most acutely for systems that must manage
the heterogeneity inherent in various domains and integrate models of different do-
mains into coherent frameworks. For example, such integration occurs in business
process reengineering, where enterprise models integrate processes, organizations,
goals and customers. Even when applications use the same terminology, they of-
ten associate different semantics with the terms. This clash over the meaning of
the terms prevents the seamless exchange of information among the applications.
Typically, point-to-point translation programs are written to enable communication
from one specific application to another. However, as the number of applications
has increased and the information has become more complex, it has been more
difficult for software developers to provide translators between every pair of appli-
cations that must cooperate. What is needed is some way of explicitly specifying
the terminology of the applications in an unambiguous fashion.

The Process Specification Language (PSL) ([8], [5]) has been designed to facil-
itate correct and complete exchange of process information among manufacturing
systems 1 Included in these applications are scheduling, process modeling, process
planning, production planning, simulation, project management, workflow, and
business process reengineering. This chapter will give an overview of the PSL On-
tology, including its formal characterization as a set of theories in first-order logic
and the range of concepts that are axiomatized in these theories.

2. How are Ontologies Used?

Applications of ontologies focus on their role as sharable and reusable represen-
tations of knowledge. In other words, when two software applications use different
terminology, an ontology can be used to specify the meanings of the terms and then
determine whether or not they are logically equivalent. Furthermore, the ontology

Sharability is a particularly acute problem for tasks that require correct and
meaningful communication and integration among intelligent agents and informa-
tion resources. A major barrier to such interoperability is semantic heterogeneity:
different applications, databases, and agents may ascribe disparate meanings to
the same terms or use distinct terms to convey the same meaning. The devel-
opment of ontologies has been proposed as a key technology to support semantic
integration—two software systems can be semantically integrated through a shared
understanding of the terminology in their respective ontologies.

The reusability of an ontology is determined relative to the genericity of its
axiomatization. In one sense, the axioms of the ontology can be instantiated within
different domains; this leads to the notion of domain theories that capture the
knowledge for particular problems. In another sense, the axioms of the ontology

1PSL has been published as the International Standard ISO 18629 by the International Or-
ganisation of Standardisation.

USING THE PSL ONTOLOGY 3

capture those properties of the world that are valid across multiple domains; new
ontologies can then be constructed as more domain-specific extensions of the generic
ontologies.

2.1. Specifying Domain Theories. Within the context of a process ontology,
domain theories take the form of descriptions of processes as repeatable patterns of
behaviour. The various forms of process representations are ubiquitous in industry:
there is a plethora of business and engineering software applications — workflow,
scheduling, discrete event simulation, process planning, business process modeling,
and others — that are designed explicitly for the construction of process models
of various sorts [5]. In addition, there are many concrete domains for process
representations, including manufacturing, web services, and business processes.

A process ontology provides the underlying semantics for the process terminol-
ogy that is common to the many disparate domains and software applications. This
allows us to evaluate the consistency of process descriptions. In this way, ontolo-
gies can be used to support automated reasoning (such as theorem proving and
constraint satisfaction) with the axioms of the ontology and domain theories alone.

Ontologies also provide guidance in the specification of domain theories. For
example, each class of activities in the PSL Ontology is associated with a specific
class of sentences that are the correct process descriptions for that class. The
primary focus of this chapter will be a survey of the various classes of activities in
the ontology together with examples of the corresponding process descripitions.

2.2. Semantic Integration. A semantics-preserving exchange of information be-
tween two software applications requires mappings between logically equivalent
concepts in the ontology of each application. The challenge of semantic integration
is therefore equivalent to the problem of generating such mappings, determining
that they are correct, and providing a vehicle for executing the mappings, thus
translating terms from one ontology into another.

The Twenty Questions approach ([2]) describes a technique for the semi-automatic
generation of semantic mappings from application ontologies to the PSL Ontology,
which can then be used to automatically derive direct mappings between applica-
tion ontologies.

The work in [6] describes an example of using PSL as a common ontology to
facilitate manufacturing process information exchange between two different ap-
plications, ProCAP – a process modelling tool based upon the IDEF3 method of
systems modelling and ILOG – a C++ library for constraint-based scheduling. In
a typical scenario, a user of ProCAP describes the types or processes that are nec-
essary to produce some product, specify the order in which these processes must
occur (including temporal constraints, where available), and describe what types
of resources are necessary for the creation of the product. A translator is written
between IDEF3 (ProCAP’s modelling language) and PSL and another translator
is written between PSL and ILOG Scheduler. The use of the scheduling software
then takes this information, instantiates the types of process and resources specified
(i.e., assign machines, people, and specific times to those process and resources),
and generates a schedule.

2.3. Building New Ontologies. An ontology with a consistent and complete ax-
iomatization of its intended semantics can be used as a semantic foundation for

4 MICHAEL GRÜNINGER

either building a new ontology or for augmenting an ontology that has an incom-
plete axiomatization. For example, the process model of the semantic web services
ontology OWL-S ([?], [4]) contains a taxonomy of control constructs for specifying
composite web services; however, the intended semantics of these constructs is ex-
pressed in natural language, since it cannot be axiomatized in OWL. The work in
[1] provides a first-order axiomatization of these constructs using the PSL Ontology.

The Semantic Web Services Ontology (SWSO) ([10]) is an extension of the PSL
Ontology with Web service-specific concepts which enables reasoning about the
semantics underlying Web services and along with their interactions with each other
and with the “real world”. Because SWSO is an extension of the PSL Ontology, it
also provides a first-order axiomatization of the intended semantics of the process
model of OWL-S. This supports reasoning with the axioms of the ontology alone,
rather than use extra-logical algorithms to guarantee that queries are entailed by
the web service specifications.

3. Basic Ontological Distinctions

The PSL Ontology consists of a set of first-order logic theories within which
there is a distinction between core theories and definitional extensions 2. Core the-
ories introduce new primitive concepts, while all terms introduced in a definitional
extension that are conservatively defined using the terminology of the core theories.

All core theories within the ontology are consistent extensions of PSL-Core
(Tpsl core), although not all extensions need be mutually consistent.

Also, the core theories need not be conservative extensions of other core theories.
The relationships among the core theories in the PSL Ontology are depicted in
Figure 1. Table 1 is a summary of the key terms in the lexicon of the core theories
which will be used in this chapter.

3.1. Activity and Activity Occurrence. In general, business and engineering
processes are described at the type level – a process specification characterizes a
certain general structure. In turn, this structure, in turn, might admit of many
instantiations which — depending on how constrained the structure is — might
differ considerably from one another. A robust foundation for process modelling,
therefore, should be able to characterize both the general process structure de-
scribed by a model as well as the class of possible instantiations of that structure.
Moreover, such a foundation must be able clearly to represent the constraints that
a process model places on something’s counting as an instantiations of the process,
the constraints on process execution.

Within the PSL Ontology, an activity is a repeatable pattern of behaviour,
while an activity occurrence corresponds to a concrete instantiation of this pat-
tern. The relationship between activities and activity occurrences is represented
by the occurrence of(o, a) relation. Activities may have multiple occurrences, or
there may exist activities which never occur. Any activity occurrence corresponds
to a unique activity.

2The complete set of axioms for the PSL Ontology can be found at

http://www.mel.nist.gov/psl/psl-ontology/. Core theories are indicated by a .th suffix

and definitional extensions are indicated by a .def suffix.
All axioms and definitions in the PSL Ontology are written in CLIF (Common Logic Inter-

change Format).

USING THE PSL ONTOLOGY 5

Tpslcore activity(a) a is an activity
activity occurrence(o) o is an activity occurrence
timepoint(t) t is a timepoint
object(x) x is an object
occurrence of(o, a) o is an occurrence of a
beginof(o) the beginning timepoint of o
endof(o) the ending timepoint of o
before(t1, t2) timepoint t1 precedes timepoint

t2 on the timeline
Tsubactivity subactivity(a1, a2) a1 is a subactivity of a2

primitive(a) a is a minimal element of the
subactivity ordering

Tatomic atomic(a) a is either primitive or a concur-
rent activity

conc(a1, a2) the activity that the concurrent
composition of a1 and a2

Tocctree legal(s) s is an element of a legal occur-
rence tree

earlier(s1, s2) s1 precedes s2 in an occurrence
tree

Tdisc state holds(f, s) the fluent f is true immediately
after the activity occurrence s

prior(f, s) the fluent f is true immediately
before the activity occurrence s

Tcomplex min precedes(s1, s2, a) the atomic subactivity occur-
rence s1 precedes the atomic sub-
activity occurrence s2 in an activ-
ity tree for a

root(s, a) the atomic subactivity occur-
rence s is the root of an activity
tree for a

Tactocc subactivity occurrence(o1, o2) o1 is a subactivity occurrence of
o2

root occ(o) the initial atomic subactivity oc-
currence of o

leaf occ(s, o) s is the final atomic subactivity
occurrence of o

Tduration timeduration(d) d is a timeduration
duration(t1, t2) the timeduration whose value is

the “distance” from timepoint t1
to timepoint t2

lesser(d1, d2) the linear ordering relation over
timedurations

Table 1. Lexicon for core theories in the PSL Ontology.

6 MICHAEL GRÜNINGER

6

6

6

6

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
.........
........

�

@
@

@
@

@@I

@
@

@
@

@@I

.........
....

.........
.........
........

�

Tpsl core

Tactocc

Tocctree
Tsubactivity

Tcomplex

Tduration

Tatomic Tdisc state

Figure 1. The core theories of the PSL Ontology. Solid lines
indicate conservative extension, while dashed lines indicate an ex-
tension that is not conservative.

In contrast to many object-oriented approaches, activity occurrences are not con-
sidered to be instances of activities, since activities are not classes within the PSL
Ontology. One can of course specify classes of activities in a process description.
For example the term pickup(x, y) can denote the class of activities for picking up
some object x with manipulator y, and the term move(x, y, z) can denote the class
of activities for moving object x from location y to location z. Ground terms such as
pickup(Block1, LeftHand) and move(Shipment1, Seattle, Chicago) are instances
of these classes of activities, and each instance can have different occurrences. Fur-
thermore, there may be classes of activity occurrences that do not correspond to
activities, e.g. that class of activity occurrences that finish by Friday.

3.2. Time. Underlying the intuition that activity occurrences are the instantia-
tions of activities is the notion that each activity occurrence is associated with
unique timepoints that mark the begin and end of the occurrence. The PSL On-
tology introduces two functions beginof and endof for this purpose.

The set of timepoints is linearly ordered, forwards into the future, and backwards
into the past. Within the PSL Ontology, the extension of the before relation
captures this linear ordering. There are also different ontological commitments
about time that are not made within the PSL Ontology, such as the denseness
of the timeline; any such commitments must be axiomatized within a theory that
extends the PSL Ontology.

There are some approaches (e.g. [3]) that do not distinguish between timepoints
and activity occurrences, so that activity occurrences form a subclass of timepoints.
However, activity occurrences have preconditions and effects, whereas timepoints do
not. Other approaches hold that timepoints are primitives but activity occurrences
are not; for example, approaches such as [9] claim that one can derive timepoints

USING THE PSL ONTOLOGY 7

as “ticks” of a clock activity; however, such an approach ties the temporal ontology
too closely to the process ontology.

The core theory Tduration for duration adds a metric to the timeline by mapping
every pair of timepoints to a new sort called timeduration that satisfies the axioms
of algebraic fields. Of course, the duration of an activity occurrence is of most
interest, and is equal to the duration between the endof and beginof timepoints of
the activity occurrence.

3.3. Objects. Many debates have erupted within philosophy over the distinction
between objects that are continuants (that is, they exist whole and entire at dif-
ferent times) and objects that are occurrents (that is, they have different parts ex-
isting at different times) 3. Although the PSL Ontology tries to avoid making any
commitments that would preclude one position or another in this debate, activity
occurrences can be considered to be occurrents, while continuants are represented
by objects. The ternary relation participates in(x, o, t) is used to tie the two ap-
proaches together by specifying that object x participates in activity occurrence o
at timepoint t.

3.4. Composition. A ubiquitous feature of process formalisms is the ability to
compose simpler activities to form new complex activities (or conversely, to de-
compose any complex activity into a set of subactivities). The PSL Ontology in-
corporates this idea while making several distinctions between different kinds of
composition that arise from the relationship between composition of activities and
composition of activity occurrences.

3.4.1. Subactivities. The PSL Ontology uses the subactivity relation to capture
the basic intuitions for the composition of activities. The core theory Tsubactivity

axiomatizes this relation as a discrete partial ordering, in which primitive activities
are the minimal elements. This theory alone does not specify any relationship
between the occurrence of an activity and occurrences of its subactivities. For
example, consider the activities in Figure 2. We can compose the primitive activities
paint and polish to make the complex activity surfacing and we can compose
them to make a different complex activity shaping. However, this specification
of subactivities alone does not allow us to say that surfacing is a deterministic
activity, or that shaping is a nondeterministic activity. The characterization of the
relationship between occurrences of activities and occurrences of their subactivities
serves as the basis for the classification of complex activities within the definitional
extensions of the ontology.

3.4.2. Concurrency. Concurrency involves more than the fact that two activities
occur at the same time, since concurrent activities may have different preconditions
and effects than any of the activities if they occur alone. In particular, the activities
may have interfering preconditions, so that even if two activities can possibly occur
separately, they cannot occur concurrently (e.g. the oven cannot be used to bake a
cake and a turkey at the same time) or the effects of two activities may clobber each
other, so that the effects of the concurrent activity are different than the effects of
the two activities if they occur separately ([7]); for example, the effect of lifting

3This terminology is used in []. The treatment of objects as continuants is also known as
endurantism or 3D-ontology, while the treatment of objects as occurrents is also known as perdu-

rantism or 4D-ontology.

8 MICHAEL GRÜNINGER

cut press punch

sur f acing shaping

make f rame f abricate

Figure 2. Example of subactivities and their composition into
different complex activities.

only the right side or only the left side of a table has the effect that the table is
touching the floor. Lifting both the right and left sides concurrently has the effect
of lifting the entire table.

This observation leads to a notion of atomic activity which corresponds to some
set of primitive activities. Concurrency is represented by the occurrence of concur-
rent activities rather than concurrent activity occurrences. The conc function that
is axiomatized in the core theory Tatomic allows the aggregation of sets of primitive
activities to form concurrent activities.

3.4.3. Subactivity Occurrences. Corresponding to the composition relation over ac-
tivities, subactivity occurrence is the composition relation over activity occur-
rences. Given an occurrence of a complex activity, subactivity occurrences are
occurrences of subactivities of the complex activity. Occurrences of atomic activity
occurrences are the minimal elements in this composition ordering – they do not
have any nontrivial subactivity occurrences.

Following the intuition that activity occurrences are occurrents rather than con-
tinuants, one can consider the subactivity occurrence to be a temporal part of the
complex activity occurrence. The axioms of the core theory Tactocc guarantee that
any subactivity occurrence is “during” an occurrence of the complex activity.

3.5. State and Change. Many applications of process ontologies are used to rep-
resent dynamic behaviour in the world so that software systems may make pre-
dictions about the future and explanations about the past. In particular, these
predictions and explanations are often concerned with the state of the world and
how that state changes. The PSL core theory Tdisc state is intended to capture the
basic intuitions about state and its relationship to activities.

Properties in the domain that can change are called fluents. Similar to the rep-
resentation of activities, fluents can also be denoted by terms within the language.
For example, in stock(Gadget1, Cambridge) denotes the fluent that represents the
property that the object Gadget1 is available in stock at the Cambidge warehouse.

Intuitively, a change in state is captured by the set of fluents that are either
achieved or falsified by an activity occurrence. The prior(f, o) relation specifies that
a fluent f is intuitively true prior to an activity occurrence o and the holds(f, o)
relation specifies that a fluent f is intuitively true after an activity occurrence o.
For example, before a delivery, Gadget1 is not in the Cambridge warehouse, but

USING THE PSL ONTOLOGY 9

after delivery occurs, it is in stock:

occurrence of(o, delivery(Gadget1, Cambridge)) ⊃
¬prior(in stock(Gadget1, Cambridge), o)∧holds(in stock(Gadget1, Cambridge), o)

A fluent is changed by the occurrence of activities, and a fluent can only be
changed by the occurrence of activities. Thus, if some fluent holds after an activity
occurrence, but after an activity occurrence later along the branch it is false, then
an activity must occur at some point between that changes the fluent. This also
leads to the requirement that the fluent holding after an activity occurrence will
be the same fluent holding prior to any immediately succeeding occurrence, since
there cannot be an activity occurring between the two by definition.

State does not change during the occurrence of an atomic activity. Consequently,
the PSL Ontology cannot represent phenomena in which some feature of the world
is changing as some continuous function of time (hence the name “Discrete State”
for the extension). If state changes during an activity occurrence, then it must be
an occurrence of a complex activity.

4. Process Descriptions for Atomic Activities

Within the PSL Ontology, activities are classified according to the kinds of con-
straints that their occurrences satisfy. A process description for an activity in some
class imposes constraints on activity occurrences corresponding to the definition of
the class. Classes of atomic activities are defined with respect to constraints that
arise from the following two questions:

• Under what conditions does an atomic activity occur?
• How do occurrences of atomic activities change fluents?

A detailed exposition of these constraints requires a closer look at the model
theory for the PSL Ontology, in particular, the notion of occurrence trees.

4.1. Occurrence Trees. An occurrence tree is a partially ordered set of atomic
activity occurrences, such that for a given set of activities, all discrete sequences
of their occurrences are branches of the tree. It is important to note that an
occurrence tree contains all occurrences of all atomic activities; it is not simply the
set of occurrences of a particular (possibly complex) activity. Because the tree is
discrete, each activity occurrence in the tree has a unique successor occurrence of
each activity.

Although occurrence trees characterize all sequences of activity occurrences, not
all of these sequences will intuitively be physically possible within the domain. We
will therefore want to consider the subtree of the occurrence tree that consists only
of possible sequences of activity occurrences; this subtree is referred to as the legal
occurrence tree. The legal(o) relation specifies that the atomic activity occurrence o
is an element of the legal occurrence tree, and the relation precedes(o1, o2) specifies
that o1 is earlier than o2 within the legal occurrence tree.

4.2. Constraints on Legal Occurrence. The process descriptions for atomic
activities constrain the legal occurrence tree. The general form of such a process
description is:

(∀o) occurrence of(o, a) ∧ legal(o) ⊃ Φ(o)
where Φ(o) is a formula that specifies the constraint on the legal activity occurrence.
In each of the following cases, different classes of atomic activities correspond to

10 MICHAEL GRÜNINGER

different classes of formulae that are used to instantiate Φ(o) in the general process
description.

4.2.1. State-based Preconditions. The most prevalent kind of precondition are mar-
kovian preconditions, in which the possibility of occurrence depends only on the
state that holds prior to an activity occurrence, e.g.

Mixing is not performed unless the moulding machine is clean.
In this case, the cleanliness of the machine is the state, and the occurrence of

the mixing activity depends on whether or not this state holds:

(1) (∀o, x) occurrence of(o,mixing(x)) ∧ legal(o) ⊃ prior(clean(x), o)

Note that the consequent of the sentence is a formula that contains only prior
literals.

4.2.2. Time-based Preconditions. There are other kinds of preconditions that are
independent of state. For example, there may be temporal preconditions that
depend only on the time at which the activity is to occur, such as

The pre-heating operation can only be performed on Tuesday or Thursday.
which is axiomatized as

(∀o, x) occurrence of(o, preheat(x)) ∧ legal(o) ⊃

(2) (beginof(o) = Tuesday) ∨ (beginof(o) = Thursday)

The consequent of this process description is a formula that contains only beginof
literals.

4.2.3. Occurrence Constraints. The possibility of an activity occurrence may de-
pend on the occurrence of other activities. Consider the example:

If we do not fold the metal after fabrication, we need to reheat it
which is axiomatized as

(∀o1, x) occurrence of(o1, reheat(x)) ∧ legal(o1) ⊃

(3) ¬(∃o2) occurrence of(o2, fold(x)) ∧ earlier(o2, o1) ∧ legal(o2)

In this case, an occurrence of the reheating activity will depend on the condition
that there is no earlier legal occurrence of the folding activity.

4.2.4. Time-based Occurrence Constraints. Preconditions may also take the form
of periodic occurrences, e.g.

Drill bits are replaced every 10 minutes.

(∀o1, x1) occurrence of(o1, replace(x1)) ∧ legal(o1) ⊃
(∃o2, x2) occurrence of(o2, replace(x2)) ∧ earlier(o2, o1)

(4) ∧legal(o2) ∧ (duration(beginof(o2), beginof(o1)) = 10)

In this example, occurrences of the replacement activity depend not only on the
occurrence of an earlier replacement activity but also on the time at which that
activity occurred.

USING THE PSL ONTOLOGY 11

4.3. Effects. Effects characterize the ways in which activity occurrences change
the state of the world. Such effects may be context-free, so that all occurrences of
the activity change the same states, or they may be constrained by other conditions.
The general form of such a process description is:

(∀o) occurrence of(o, a) ∧ Φ(o) ⊃ holds(f, o)

where Φ(o) is a formula that specifies the constraint on the effects of the activity
occurrence.

4.3.1. State-based Effects. The most common constraint is state-based effects that
depend on some context:

If the object is fragile, then it will break when dropped; if the object is elastic,
then it will bounce when dropped.

(∀o, x) occurrence of(o, drop(x)) ∧ prior(fragile(x), o)

(5) ⊃ holds(broken(x), o)

4.3.2. Time-based Effects. Although process descriptions for the effects of atomic
activities are most often specifying state-based effects, other kinds of constraints
also arise in practice, such as time-based effects:

If the rental car is returned after the due date, then the cost includes a late fee
which is axiomatized by

(∀o, x)occurrence of(o, rental(x))∧before(DueDate, endof(o)) ⊃ holds(late fee(x), o)

The effects of the activity occurrence depend only on timepoints – the time at
which the activity occurrence ends and the timepoint that is the due date of the
rental.

4.3.3. Occurrence-based Effects. In some cases, the effects depend not only on when
the activity occurs, but also on the timepoints at which other activity occurrences
begin or end. For example,

If we remove the coffee pot before the brewing activity completes, then the burner
will be wet

is axiomatized by

(∀o1, o2, x, y) occurrence of(o1, brew(x, y)) ∧ occurrence of(o2, remove(x, y))

(6) ∧before(beginof(o2), beginof(o1)) ⊃ holds(wet(y), o1)

and in this case, the formula in the process description contains multiple variables
denoting different activity occurrences, as well as before literals.

4.3.4. Duration-based Effects. For some classes of atomic activities, the effects are
dependent on the duration of the activity occurrences. For example,

The time on the clock display will change after holding the button for three sec-
onds

is axiomatized by

(∀o, x) occurrence of(o, press(x)) ∧ duration(endof(o), beginof(o)) = 3

12 MICHAEL GRÜNINGER

ocut
1

opunch
2

opaint
3

opress
4

ocut
5

opaint
6

opress
7

opunch
8

opress
9

opaint
10

opunch
11

Figure 3. Example of occurrence tree and activity trees.

(7) ⊃ holds(display(x), o)

The effects do not depend on the time at which the activity occurs, so that the
formula does not contain any before literals.

5. Process Descriptions for Complex Activities

Classes of complex activities are defined with respect to the following two ques-
tions:

• What is the relationship between the occurrence of the complex activity
and occurrences of its subactivities?

• Under what conditions does a complex activity occur?
An activity may have subactivities that do not occur; the only constraint is that

any subactivity occurrence must correspond to a subtree of the activity tree that
characterizes the occurrence of the activity.

5.1. Activity Trees. The basic structure that characterizes occurrences of com-
plex activities is the activity tree, which is a subtree of the legal occurrence tree
that consists of all possible sequences of atomic subactivity occurrences beginning
from a root subactivity occurrence. Each branch of an activity tree corresponds to
a possible sequence of occurrences of subactivities of the complex activity.

In a sense, an activity tree is a microcosm of the occurrence tree, in which we
consider all of the ways in which the world unfolds in the context of an occurrence
of the complex activity. For example, consider the occurrence tree in Figure 3,
and suppose that an occurrence of the complex activity make frame consists of
an occurrence of cut followed by occurrences of punch and press. The subtree

USING THE PSL ONTOLOGY 13

consisting of
{ocut

1 , opunch
2 , opress

7 , opress
4 , opunch

11 }
is a possible activity tree for make frame.

Three relations in particular are used in process descriptions for complex activi-
ties. The root(o, a) relation specifies that the atomic subactivity occurrence o is the
root of the activity tree. The min precedes relation is the ordering relation over
the atomic subactivity occurrences in the activity tree. In Figure 3, the activity
tree for make frame satisfies the sentence

(∀o) occurrence of(o,make frame) ⊃ (∃o1, o2, o3) occurrence of(o1, cut)

∧occurrence of(o2, punch) ∧ occurrence of(o3, press)

∧root(o1,make frame)∧min precedes(o1, o2,make frame)∧min precedes(o1, o3,make frame)
The axioms of Tactocc guarantees that there is a one-to-one correspondence be-

tween branches of activity trees and complex activity occurrences. The axioms for
subactivity occurrence relation guarantee that the branches of the activity trees for
a subactivity are contained in the branches of the activity tree for the complex ac-
tivity. In Figure 3, the branch {ocut

1 , opunch
2 , opress

7 } of the activity tree corresponds
to an occurrence omake frame

12 of make frame, and each element of the branch is a
subactivity occurrence of omake frame

12 .

5.2. Branch Structure. Different subactivities may occur on different branches of
the activity tree – different occurrences of an activity may have different subactivity
occurrences or different orderings on the same subactivity occurrences.

In this sense, branches of the activity tree characterize the nondeterminism that
arises from different ordering constraints or iteration. For example, the surfacing
activity is intuitively nondeterministic; the activity trees for surfacing contain
two branches, one branch consisting of an occurrence of polish and one branch
consisting of an occurrence of paint.

Complex activities can be classified with respect to symmetries of its activity
trees. Concretely, these are axiomatized by relationships between the different
branches of an activity tree. We will now take a closer look at the process descrip-
tions for activities in these classes.

5.2.1. Permuted Activities. For permuted activities, each branch of the activity tree
is a different permutation of the same set of subactivity occurrences.

For example, the informal process description
Making the frame consists of cutting, punching, and pressing.
can be formally written as

(∀o, x) occurrence of(o,make frame(x)) ⊃ (∃o1, o2, o3) occurrence of(o1, cut(x))

(8) ∧occurrence of(o2, punch(x)) ∧ occurrence of(o3, press(x))

If we consider the activity trees that satisfy this sentence (4), we can see that
each branch contains an occurrence of each subactivity.

Activities may also be nondeterministic; for example, there could be alternative
process plans to produce the same product depending on the customer, such as the
constraint

Fabrication consists of cutting the metal together with either pressing or punch-
ing.

14 MICHAEL GRÜNINGER

ocut
1

ocut
5

ocut
8

opress
2

opress
6

opress
7

opunch
3

opunch
4

Figure 4. Activity trees for permuted activities.

ocut
1

opunch
2

opress
3

Figure 5. Activity trees for permuted activities.

which is formally written as

(∀o, x)occurrence of(o, fabricate(x)) ⊃ (∃o1, o2)subactivity occurrence(o1, o)∧subactivity occurrence(o2, o)

(9)
occurrence of(o1, cut(x))∧(occurrence of(o2, press(x))∨occurrence of(o2, punch(x)))

The activity tree in Figure 5 that satisfies this sentence has branches that contain
occurrences of different subactivities.

5.2.2. Ordering Constraints. One of the most common intuitions about processes is
the notion of process flow, or the specification of some ordering over the subactivities
of an activity, such as

Making the car chassis involves making the body and making the frame in parallel,
followed by final assembly.

which is axiomatized by the process description

(∀o, o1, o2, o3, x, y)occurrence of(o,make chassis(x, y))∧occurrence of(o1,make body(y))

∧occurrence of(o2,make frame(x)) ∧ occurrence of(o3, final assembly(x, y))

(10)
⊃ min precedes(o1, o3,make chassis(x, y))∧min precedes(o2, o3,make chassis(x, y))

In Figure 6, we can see that each branch of the activity tree for this activity
satisfies the same set of ordering constraints on subactivity occurrences.

USING THE PSL ONTOLOGY 15

omake body
1 omake body

5

omake f rame
2 omake f rame

4

o f inal assembly
3

o f inal assembly
6

Figure 6. Activity trees for permuted activities.

5.2.3. Iteration. Iteration is captured by the class of repetitive activities, in which
the activity tree can be decomposed into copies of some subtree (which intuitively
corresponds to the activity tree of the subactivity that is being iterated).

Nondeterministic iteration, such as
Occurrences of painting consist of multiple occurrences of coating
is axiomatized by a process description of the form

(∀o1) occurrence of(o1, painting) ⊃

(∀o2, s1)occurrence of(o2, coating)∧subactivity occurrence(o2, o1)∧leaf occ(s1, o2)

⊃ leaf occ(s1, o1)

∨(∃o3, s2)occurrence of(o3, coating)∧(s2 = root occ(o3))∧next subocc(s1, s2, painting)

This process description says that for every occurrence of coating in an activity tree
for painting, either there exists a next occurrence of coating or the leaf subactivity
occurrence of the occurrence of coating is also the leaf occurrence of the occurrence
of painting.

Complex activities in which the number of iterations depends on achieving some
state (analogous to while loops) is a property of a set of activity trees, as we shall
see in the next section.

5.3. Spectrum and Variation. A complex activity will in general have multiple
activity trees within an occurrence tree, and not all activity trees for an activity
need be isomorphic to each other. This property leads to the notion of the spectrum
of an activity, which is the set of equivalence classes of isomorphic activity trees.
While the former classes of activities compared branches within the same activity
tree, we can also define classes with respect to the spectrum of the activity.

The notion of variation within the PSL Ontology characterizes the conditions
under which activity trees for a complex activity are isomorphic to each other. Dif-
ferent activity trees for the same activity can have different subactivity occurrences,
or the activity trees may differ on the ordering of the subactivity occurrences.

For conditional activities, the fluents that hold prior to the activity occurrence
determines which subactivities occur, as in the constraint

Within the painting activity, if the surface of the product is rough, then sand the
product:

which is written as

(∀s, o1, x) occurrence of(o1, paint(x)) ∧ root occ(o1) = s ∧ (prior(rough(x), s)

(11)
⊃ (∃o2)occurrence of(o2, sand(x))∧subactivity occurrence(o2, o1)∧(root occ(o2) = s)

16 MICHAEL GRÜNINGER

Alternatively, the ordering over subactivity occurrences of an activity may de-
pend on state, as in the constraint

If the machine is not ready, then perform the painting before final assembly
which can be written as

(∀o, o1, o2, x, y) occurrence of(o, assembly(x, y))

∧occurrence of(o1, paint(x)) ∧ occurrence of(o2, final(x))
(12)
∧¬prior(ready(y), root occ(o)) ⊃ min precedes(root occ(o1), root occ(o2), assembly(x))

Notice how this is distinct from conditional activities, since both painting and
final assembly will occur; the nondeterminism in this case arises from the ordering
of the occurrences of these activities.

5.4. Distribution. The preceding two sections have presented some of the classes
in the ontology that are defined with respect to the relationship between occurrences
of complex activities and occurrences of their atomic subactivities. We now turn to
the classes of complex activities that arise from constraints under which complex
activities themselves occur.

There may be branches of a subtree of the occurrence tree that are isomorphic
to branches of an activity tree, yet they do not correspond to occurrences of the
activity. For example, in Figure 3, {ocut

1 , opunch
8 } need not be an activity tree for

make frame, even though it is isomorphic to a branch of an activity tree.
The general form for process descriptions related to distribution is:

(∀s) Φ(s) ⊃ (∃o) occurrence of(o, a) ∧ s = root occ(o)

For triggered activities such as
Deliver the product when we have received three orders.
state determines when an activity must occur, so that the process description is

written as
(∀s, x) prior(order quantity(x, 3), s) ⊃

(13) (∃o) occurrence of(o, deliver(x)) ∧ s = root occ(o)

For launched activities such as
Deliver the product at 1000.
time determines when an activity must occur, leading to the process description

(∀s) (beginof(s) = 1000) ⊃

(14) (∃o, x) occurrence of(o, deliver(x)) ∧ s = root occ(o)

In either case, models of the process description specify the distribution of ac-
tivity trees within the occurrence tree.

5.5. Embedding Constraints. The PSL Ontology does not force the existence
of complex activities; there may be subtrees of the occurrence tree that contain
occurrences of subactivities, yet not be activity trees. Consequently, not every oc-
currence of a subactivity is a subactivity occurrence due to external activities that
occur during an occurrence of an activity. We can exploit this property to repre-
sent the existence of activity attempts, intended effects, and temporal constraints;
subtrees that do not satisfy the desired constraints will simply not correspond to
activity trees for the activity.

USING THE PSL ONTOLOGY 17

5.5.1. External Activity Occurrences. For a given complex activity, there may be
external activities (that is, activities that are not subactivities) whose occurrence
either interfere with the complex activity or which are necessary for the activity to
occur. Examples of such necessary activities include either activities performed by
external agents (such as a courier delivery or pickup) or it may be an activity such
as setup. In the constraint

To produce the chassis, first drill the series of 1 cm holes, followed by drilling
the series of 2 cm holes,

the activity that changes the drill bit fixture is not a subactivity of the process
plan for producing the chassis, but is a setup activity that must occur between
drilling the two sets of holes.

5.5.2. Interruptability. Closely related to external activity occurrences is the notion
of interruptability and activity attempts. With an interruptable activity, an exter-
nal activity may occur without interfering with the original activity. For example,
interruptable activities may be preempted or suspended:

The assembly of computers for one customer can be halted to work on a rush
order for another customer

(∀s1)root(s1, assemble(x1))∧occurrence of(s3, assemble(x2))∧legal(s3)∧earlier(s1, s3)

⊃ (∃s2) leaf(s2, assemble(x1)) ∧min precedes(s1, s2, assemble(x1))

while noninterruptable activities may not:
Pouring of metal from the furnace cannot be stopped once initiated.

(∀s1, s2)root(s1, pour metal)∧leaf(s2, pour metal)∧min precedes(s1, s2, pour metal)

⊃ ¬(∃s3) occurrence of(s3, stop) ∧ earlier(s1, s3) ∧ earlier(s3, s2)

In this latter example, if for some reason the metal pouring does stop, then we
would intuitively consider this to be an activity attempt, rather than an occurrence
of the activity.

5.5.3. Intended Effects. There are many circumstances in which we want to make a
distinction between the intended effects of an activity and the actual effects of the
activity. For example, the manufacturing process plan for making some product in
a steel company is defined with respect to the properties specified by customer and
quality requirements (such as grade, surface properties, width, and thickness), but
due to external nondeterministic factors, not every occurrence of the process will
provide products that satisfy these requirements. Quality problems arise from this
divergence of actual effects from intended effects.

For example, informal process descriptions such as Bake the soup until it is
opaque or Heat the solution until reaches 50 C can be formalized by sentences of
the form

(∀s) leaf(s, a) ⊃ holds(f, s)

In both of these examples, it is possible to terminate the activity occurrence
before the intended state is achieved, but in the context of the intended effects, the
activity occurrence will terminate only when the state is achieved.

18 MICHAEL GRÜNINGER

5.5.4. Temporal Constraints. With temporal constraints, subactivities are not al-
lowed to occur at arbitrary times during occurrences of the activity. Examples of
such constraints include schedules, which specify the possible times at which the
subactivities may occur:

The part will arrive 10 days after placing the order request

(∀o, s1, s2) min precedes(s1, s2, a) ∧ occurrence of(s1, a1) ∧ occurrence of(s2, a2)

⊃ duration(endof(s2), endof(s1)) = 10
In this example, the possible occurrences of the activity are restricted to those

whose subactivities satisfy the temporal constraints.

6. Specialization of Activities in PSL

In this section, we outline three different possible approaches to the representa-
tion of activity specialization and generalization using the PSL Ontology.

6.1. Specialization and Classes of Activities. The most obvious approach is
to define classes of activities, so that specialization is characterized by subclasses
of activities.

For example, if we want to capture the intuition that DeliveryByTankerTruck is
a specialization of DeliveryByTruck, which is a specialization of Delivery, then we
could represent these as classes of activities:

(∀a) DeliveryByTruck(a) ⊃ Delivery(a)

(∀a) DeliveryByTankerTruck(a) ⊃ DeliveryByTruck(a)
Note that classes of activities are not themselves activities, and hence they cannot

have occurrences; only instances of such classes are activities.

6.2. Specialization as Subactivities. An alternative approach is to to charac-
terize generalizations of activities to be nondeterministic activities, in which case a
specialization is an activity that is a subactivity of the nondeterministic one.

Consider the following scenario: the activity of Alice painting some house-1 is a
specialization of two activities, someone painting house-1, and Alice painting some
house; these are both specializations of the painting activity, in which someone
paints some house.

We can formalize this using the following terms:

paint(x, y), alice paint(x), paint house1(x), painting

Intuitively, the more general the activity, the more nondeterministic it becomes,
while the more specialized the activity, the more deterministic it becomes. For
example, painting nondeterministically selects some painter and some house, while
paint(alice, house1) has a specific painter and a specific house.

We can use the subactivity relation of Tsubactivity to capture the specialization
relationships among these activities (see Figure 7).

The relationships in the figure can be axiomatized as:

(∀y) subactivity(paint(alice, y), alice paint(y))

(∀x) subactivity(paint(x, house1), paint house1(x))
Thus, a specialization of an activity is characterized as a subactivity.

USING THE PSL ONTOLOGY 19

�
�

�
�

��

@
@

@
@

@@

@
@

@
@

@@

.
�

�
�

�
��

painting

alice paint(house1) paint house1(Alice)

paint(alice, house1)

Figure 7. Activity specialization and nondeterminism. The links
in this figure denote the subactivity relation.

An occurrence of paint(alice, house1) is distinct from an occurrence of alice paint(house1),
which in turn is distinct from an occurrence of painting; however, these are all re-
lated by the subactivity occurrence relation (axiomatized in Tactocc).

Any occurrence o1 of paint(alice, house1) will be a subactivity occurrence of an
occurrence o2 of alice paint(house1), and will also be a subactivity occurrence of an
occurrence o3 of paint house1(alice); both of these will be subactivity occurrences
of an occurrence o4 of painting.

We can define a new relation that is perhaps closer to the perspective that wants
to say that an occurrence of paint(alice, house1) is also an occurrence of painting:

(∀o, a) specialized occurrence(o, a) ≡

(∃o′) occurrence of(o′, a) ∧ subactivity occurrence(o, o′)

Using this defined relation, we can say that an occurrence of paint(alice, house1)
is a specialized occurrence of alice paint(house1), which is a specialized occurrence
of painting.

6.3. Specialization as Constraints on Activities. Finally, one can characterize
specialization as constraints between the sets of atomic subactivity occurrences for
different activities. In this approach, an activity a1 is a specialization of another
activity a2 if occurrences of a1 satisfy all of the constraints on occurrence of a2, and
there are additional constraints on occurrences of a1. Within the model theory of
PSL, this is equivalent to saying that the activity trees for a1 are always contained
in activity trees for a2.

For example, suppose that the dining activity has three subactivities, order food,
eating and payment, which can the latter two activities can occur in any order.
Suppose that there are two other activities, fast food (in which payment occurs
before eating) and formal dining (in which payment occurs after eating). Intu-
itively, both fast food and formal dining are specializations of dining; they all
have the same subactivities (see Figure 9), but the specializations impose additional
constraints on the occurrences of the subactivities.

20 MICHAEL GRÜNINGER

�
�

�
��

@
@

@
@R

-

-

sorder food
1

seating
4 spayment

5

spayment
2 seating

3

Figure 8. Activity trees for dining, fast food, and
formal dining. Superscripts denote which subactivity is oc-
curring.

eatingpaymentorder food

formal diningfast food dining
HHH

HHH
HHH

HHH
HHH

HHHH�
�

�
�

�
�

�
�

���
�

�
�

�
�

�
�

��

. ���
���

���
���

���
����

@
@

@
@

@
@

@
@

@@

.
@

@
@

@
@

@
@

@
@@

Figure 9. Subactivity relationships for dining, fast food, and formal dining.

Within PSL, these three activities would have the following process descriptions:

(∀o) occurrence of(o, dining) ⊃

(∃s1, s2, s3)occurrence of(s1, eating)∧occurrence of(s2, payment)∧occurrence of(s3, order food)

min precedes(s3, s1, dining) ∧min precedes(s3, s2, dining)

(∀o) occurrence of(o, formal dining) ⊃

(∃s1, s2, s3)occurrence of(s1, eating)∧occurrence of(s2, payment)∧occurrence of(s3, order food)

∧min precedes(s1, s2, formal dining) ∧min precedes(s3, s1, formal dining)

(∀o) occurrence of(o, fast food) ⊃

(∃s1, s2, s3)occurrence of(s1, eating)∧occurrence of(s2, payment)∧occurrence of(s3, order food)

∧min precedes(s2, s1, fast food) ∧min precedes(s3, s2, fast food)

Examples of the activity trees for these activities are shown in Figure 8. Any
activity tree for dining has two branches; on one branch, payment occurs before
eating, and on the other branch, eating occurs before payment. Any activity
tree for fast food is equivalent to the former branch, and any activity tree for
formal dining is equivalent to the latter branch. Activity trees for either of these
activities will always be equivalent to a branch of an activity tree for dining.

USING THE PSL ONTOLOGY 21

We can then define the following relation to capture the intuition of specializa-
tion:

(∀a1, a2) specialized activity(a1, a2) ≡
((∀s1, s2) min precedes(s1, s2, a1) ⊃ min precedes(s1, s2, a2))

so that we get
specialized activity(formal dining, dining)

specialized activity(fast food, dining)

7. Summary

Within the increasingly complex environments of enterprise integration, elec-
tronic commerce, and the Semantic Web, where process models are maintained in
different software applications, standards for the exchange of this information must
address not only the syntax but also the semantics of process concepts. PSL draws
upon well-known mathematical tools and techniques to provide a robust semantic
foundation for the representation of process information. This foundation includes
first-order theories for concepts together with complete characterizations of the
soundness and completeness of these theories. In this chapter, we have seen how
the PSL Ontology can be used to specify process descriptions for a broad range of
problems and provide the semantic foundations for new ontologies.

References

[1] Gruninger, M. (2003) Applications of PSL to Semantic Web Services, Workshop on

Semantic Web and Databases. Very Large Databases Conference, Berlin.
[2] Gruninger, M. and Kopena, J. (2004) Semantic Integration through Invariants, AI

Magazine, 26:11-20.

[3] Hayes, P. (1996) A Catalog of Temporal Theories. Artificial Intelligence Technical
Report UIUC-BI-AI-96-01, University of Illinois at Urbana-Champaign.

[4] McIlraith, S., Son, T.C. and Zeng, H. (2001) Semantic Web Services, IEEE Intelligent

Systems, Special Issue on the Semantic Web. 16:46–53, March/April, 2001.
[5] Menzel, C. and Gruninger, M. (2001) A formal foundation for process modeling, Sec-

ond International Conference on Formal Ontologies in Information Systems, Welty
and Smith (eds), 256-269.

[6] Ciocoiu, M., Gruninger M., and Nau, D. (2001) Ontologies for integrating engineering

applications, Journal of Computing and Information Science in Engineering, 1:45-60.
[7] Pinto, J. and Reiter, R. (1993) Temporal reasoning in logic programming: A case

for the situation calculus. Proceedings of the 10th International Conference on Logic

Programming, Budapest, Hungary, June 1993.
[8] Schlenoff, C., Gruninger, M., Ciocoiu, M., (1999) The Essence of the Process Speci-

fication Language, Transactions of the Society for Computer Simulation vol.16 no.4
(December 1999) pages 204-216.

[9] Sowa, J. (2000) Knowledge Representation: Logical, Philosophical, and Computa-

tional Foundations. Brooks/Cole Publishing.

[10] Semantic Web Services Framework (SWSF) Overview W3C Member Submission 9
September 2005.

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto,

Ontario, Canada, gruninger@mie.utoronto.ca

